Technical Library: atomizer (Page 1 of 2)

Utility of Dual Applicators for Non-Atomized Conformal Coating to Improve High-Volume Manufacturing Optimization

Technical Library | 2017-12-07 10:35:50.0

Electronics manufacturers protect their circuit boards with conformal coatings. Conformal coatings serve as a barrier from environmental hazards and internal shorts, tin whiskers, and corrosion at the board level. Within conformal coatings different material chemistries specialize in shielding from an array of hazards and can be applied by multiple methods. The most common method is atomized spray which disperses the material into a fine mist. Alternatively, non-atomized coating controls the materials' dispense shape while maintaining the original liquid form. While some applications demand atomized spray and other scenarios overlap between atomized and non-atomized coating, this paper focuses on the circumstances where materials are ideally suited for non-atomized, selective coating.

ASYMTEK Products | Nordson Electronics Solutions

Mastering Precision: I.C.T's SMT Conformal Coating Valves

Technical Library | 2023-12-06 03:28:49.0

Mastering Precision: I.C.T's SMT Conformal Coating Valves Introduction Of SMT Conformal Coating Valves: In various industries, including electronics, lighting, energy, and life sciences, the SMT conformal coating process plays a critical role. Precision is key, and the choice of a SMT coating valve significantly influences application quality. This article explores I.C.T's SMT conformal coating valves, focusing on the C-0101, C-L101, PJ-01, PJ-01 (with plastic bucket), C-0100, D-0100, D-0300, and the W Series. C-0101 Water Curtain Spray SMT Conformal Coating Valves: The C-0101, a non-atomizing water curtain spray valve, excels with low-viscosity solvent materials. It ensures clean and precise edges in applications like conformal coatings, UV adhesives, backfilling, and volatile substances. C-L101 Rotary Water Curtain Spray Valve: Similar to the C-0101, the C-L101 suits low-viscosity solvent materials, offering a precise edge without splashing for various coatings. PJ-01 Injection Valve (Without Plastic Bucket): Designed for high-precision applications in electronics, lighting, energy, and life sciences, the PJ-01 excels in accurate dispensing and coating. It accommodates various materials, including red glue, liquids, and pastes. PJ-01 Injection Valve (With Plastic Bucket 30CC): The PJ-01, with a 30cc plastic bucket, maintains high precision for complex circuit board applications, offering precise dispensing for materials like red glue, liquids, and pastes. C-0100 Non-Rotating Film Valve: Different from pneumatic atomizing valves, the C-0100 provides precise edge definition without air pressure involvement. It addresses issues related to atomizing drift and fast-drying adhesives, allowing control over the film width. D-0100 Precision Valve: The D-0100, with a unique fluid-sealing structure driven by compressed air, minimizes seal replacement frequency. Suitable for various fluid dispensing, it handles UV adhesives, encapsulating materials, silicones, epoxies, and surface coatings. D-0300 Dispensing Valve: Tailored for precision fluid dispensing at low driving pressure, the D-0300 accommodates a range of materials, including acrylics, silicones, epoxies, and UV adhesives. It's ideal for applications where accuracy and consistency are crucial. W Series: Needle Design Atomization Valves: The W Series offers needle design valves leaving zero residue. Easy to clean without disassembly, they provide adjustable fluid and air pressure for various coating materials, ensuring excellent atomization effects. Analyzing The Options: When selecting a conformal coating valve, consider specific application requirements. C-0101 and C-L101 suit low-viscosity solvent materials, providing clean and precise edges. PJ-01, with or without a plastic bucket, offers high-precision dispensing for complex applications. C-0100 and D-0100 are versatile for various materials, and D-0300 excels in precision dispensing. The W Series offers residue-free needle design atomization valves. Choose based on material, precision, and coating needs. Integration with I.C.T's Conformal Coating Machines: Integral to I.C.T's Conformal Coating machines, these valves enable precise application tailored to specific requirements. Machines like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650 come equipped with a range of valve options catering to diverse production line needs. I.C.T SMT Coating Machine.png Conclusion: Selecting the right conformal coating valve is crucial for consistent, high-quality results. Evaluate options based on material, precision, and coating requirements. I.C.T provides tailored solutions for electronic assembly needs. For detailed insights into coating and dispensing machines, follow the provided link. Professional engineers are ready to assist in designing a production line that perfectly matches your requirements, ensuring optimal performance. Contact us for more information and tailored solutions to elevate your conformal coating processes.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Choosing the Right Model I.C.T SMT Coating Machine

Technical Library | 2023-12-01 11:08:12.0

Choosing the Right Model I.C.T SMT Coating Machine In the realm of SMT Coating Machine, I.C.T offers an extensive array of advanced models tailored to diverse production needs. The choice of the right machine significantly influences the efficiency and precision of your conformal coating process. This article will provide an in-depth exploration of I.C.T's PCB conformal coating spray machine models, specifically the I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650, assisting you in making an informed decision aligned with your specific requirements. I.C.T PCB Conformal Coating Spray Machines Overview I.C.T, renowned for its commitment to innovation, quality, and safety, ensures all models hold CE certification. Let's delve into the key distinctions between these models and the essential factors to consider when selecting the ideal machine for your needs. I.C.T-T550: Precision in Simplicity The I.C.T-T550 SMT Coating Machine model features two critical valves: the atomization valve and the precision valve. If you're interested in exploring a variety of coating valves, simply click here for more information. Ideal for applications where fixed valves suffice, the I.C.T-T550, lacking rotation or tilting capabilities, ensures consistent and reliable results for straightforward conformal coating requirements. I.C.T-T550U: Unleash Flexibility For those requiring more versatility, the I.C.T-T550U SMT Coating Machine model is designed to meet your needs. The addition of a rotating U-axis empowers the valves to rotate a full 360 degrees and tilt up to 35 degrees, enabling precise coating in challenging, intricate areas. The I.C.T-T550U's flexibility makes it an excellent choice for a wide range of applications. I.C.T-T600: Doubling Efficiency Closely resembling the I.C.T-T550 SMT Coating Machine, the I.C.T-T600 boasts a unique feature – equipped with two atomization valves. This dual-valve setup enables simultaneous coating of two PCBs, effectively doubling production efficiency. Ideal for applications prioritizing speed and efficiency, the I.C.T-T600 SMT Coating Machine streamlines the coating process. I.C.T-T650: Versatility Redefined In cases requiring different valves for comprehensive coating, the I.C.T-T650 SMT Coating Machine is the solution. This model features two atomization valves and two precision valves, offering exceptional flexibility for diverse conformal coating applications. The I.C.T-T650 SMT Coating Machine ensures precise and reliable results for even the most complex coating needs. Conclusion: PCB Conformal Coating Spray Machines Selecting the right I.C.T PCB conformal coating spray machine is crucial for enhancing the efficiency and effectiveness of your production process. Consider factors such as the size, complexity, and coating requirements of your PCBAs. Rest assured, I.C.T's unwavering commitment to innovation, quality, and safety guarantees the perfect solution to elevate your conformal coating endeavors. If you need further guidance or wish to tap into the expertise of I.C.T professional engineers for designing a customized coating production line, do not hesitate to reach out. We are here to help you achieve optimal results while meeting European safety standards. If uncertain about whether your product requires a PCB dispensing machine or coating machine, feel free to reach out directly or click here to read our comprehensive guide for further insights: Differences Between Coating & Dispensing.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Coating Drug-eluting Arterial Stents Using Ultrasonic Spray Nozzles

Technical Library | 2009-02-04 21:49:02.0

One proven method used to treat clogged arteries employs tubular, mesh-like metal structures, known as stents, inserted into an affected artery to relieve the blockage. Bare metal stents often cause a condition called restinosis, the buildup of scar tissue around the stent, causing re-blockage. To counter this, polymer coatings containing drugs that are released over time are used to inhibit restinosis. Applying coatings to stents, which have intricate geometries, is challenging. Using ultrasonic atomizing spray nozzles has proven effective in achieving continuous and uniform coatings. This paper describes the unique nozzle designs employed, the methodology used, and the results obtained.

SONO-TEK CORPORATION

Strain Solitons and Topological Defects in Bilayer Graphene

Technical Library | 2014-05-01 15:14:12.0

Bilayer graphene has been a subject of intense study in recent years. The interlayer registry between the layers can have dramatic effects on the electronic properties: for example, in the presence of a perpendicular electric field, a band gap appears in the electronic spectrum of so-called Bernal-stacked graphene. This band gap is intimately tied to a structural spontaneous symmetry breaking in bilayer graphene, where one of the graphene layers shifts by an atomic spacing with respect to the other. This shift can happen in multiple directions, resulting in multiple stacking domains with soliton-like structural boundaries between them

Cornell University

Effectiveness of Conformal Coat to Prevent Corrosion of Nickel-palladium-gold-finished Terminals

Technical Library | 2015-03-26 19:16:03.0

Nickel-palladium-gold-finished terminals are susceptible to creep corrosion. Excessive creep corrosion can result in device failure due to insulation resistance loss between adjacent terminals. The mixed flowing gas test has been demonstrated to produce creep corrosion on parts with nickel-palladium-gold finished terminals. Conformal coats are often used to protect printed wiring assemblies from failure due to moisture and corrosion. However, coating may not be sufficient to protect lead terminations from failure.In this study, acrylic, silicone, urethane, parylene, and atomic layer deposit (ALD) coatings were examined for their effectiveness at preventing corrosion of nickel-palladium-gold-finished terminals.

University of Maryland

New development of atomic layer deposition: processes, methods and applications

Technical Library | 2020-09-08 16:43:32.0

Atomic layer deposition (ALD) is an ultra-thin film deposition technique that has found many applications owing to its distinct abilities. They include uniform deposition of conformal films with controllable thickness, even on complex three-dimensional surfaces, and can improve the efficiency of electronic devices. This technology has attracted significant interest both for fundamental understanding how the new functional materials can be synthesized by ALD and for numerous practical applications, particularly in advanced nanopatterning for microelectronics, energy storage systems, desalinations, catalysis and medical fields. This review introduces the progress made in ALD, both for computational and experimental methodologies, and provides an outlook of this emerging technology in comparison with other film deposition methods. It discusses experimental approaches and factors that affect the deposition and presents simulation methods, such as molecular dynamics and computational fluid dynamics, which help determine and predict effective ways to optimize ALD processes, hence enabling the reduction in cost, energy waste and adverse environmental impacts. Specific examples are chosen to illustrate the progress in ALD processes and applications that showed a considerable impact on other technologies.

University of Johannesburg

Dissolution in Service of the Copper Substrate of Solder Joints

Technical Library | 2019-06-20 00:09:49.0

It is well known that during service the layer of Cu6Sn5 intermetallic at the interface between the solder and a Cu substrate grows but the usual concern has been that if this layer gets too thick it will be the brittleness of this intermetallic that will compromise the reliability of the joint, particularly in impact loading. There is another level of concern when the Cu-rich Cu3Sn phase starts to develop at the Cu6Sn5/Cu interface and an imbalance in the diffusion of atomic species, Sn and Cu, across that interface results in the formation at the Cu3Sn/Cu interface of Kirkendall voids, which can also compromise reliability in impact loading. However, when, as is the case in some microelectronics, the copper substrate is thin in relation to the volume of solder in the joint an overriding concern is that all of the Cu will be consumed by reaction with Sn to form these intermetallics.This paper reports an investigation into the kinetics of the growth of the interfacial intermetallic, and the consequent reduction in the thickness of the Cu substrate in solder joints made with three alloys, Sn-3.0Ag-0.5Cu, Sn-0.7Cu-0.05Ni and Sn-1.5Bi-0.7Cu-0.05Ni.

Nihon Superior Co., Ltd.

RELIABLE NICKEL-FREE SURFACE FINISH SOLUTION FOR HIGHFREQUENCY-HDI PCB APPLICATIONS

Technical Library | 2020-08-05 18:49:32.0

The evolution of internet-enabled mobile devices has driven innovation in the manufacturing and design of technology capable of high-frequency electronic signal transfer. Among the primary factors affecting the integrity of high-frequency signals is the surface finish applied on PCB copper pads – a need commonly met through the electroless nickel immersion gold process, ENIG. However, there are well-documented limitations of ENIG due to the presence of nickel, the properties of which result in an overall reduced performance in high-frequency data transfer rate for ENIG-applied electronics, compared to bare copper. An innovation over traditional ENIG is a nickel-less approach involving a special nano-engineered barrier designed to coat copper contacts, finished with an outermost gold layer. In this paper, assemblies involving this nickel-less novel surface finish have been subjected to extended thermal exposure, then intermetallics analyses, contact/sheet resistance comparison after every reflow cycle (up to 6 reflow cycles) to assess the prevention of copper atoms diffusion into gold layer, solder ball pull and shear tests to evaluate the aging and long-term reliability of solder joints, and insertion loss testing to gauge whether this surface finish can be used for high-frequency, high density interconnect (HDI) applications.

LiloTree

Semi-Additive Process (SAP) Utilizing Very Uniform Ultrathin Copper by A Novel Catalyst

Technical Library | 2020-09-02 22:14:36.0

The demand for miniaturization and higher density electronic products has continued steadily for years, and this trend is expected to continue, according to various semiconductor technology and applications roadmaps. The printed circuit board (PCB) must support this trend as the central interconnection of the system. There are several options for fine line circuitry. A typical fine line circuit PCB product using copper foil technology, such as the modified semi-additive process (mSAP), uses a thin base copper layer made by pre-etching. The ultrathin copper foil process (SAP with ultrathin copper foil) is facing a technology limit for the miniaturization due to copper roughness and thickness control. The SAP process using sputtered copper is a solution, but the sputtering process is expensive and has issues with via plating. SAP using electroless copper deposition is another solution, but the process involved is challenged to achieve adequate adhesion and insulation between fine-pitch circuitries. A novel catalyst system--liquid metal ink (LMI)--has been developed that avoids these concerns and promotes a very controlled copper thickness over the substrate, targeting next generation high density interconnect (HDI) to wafer-level packaging substrates and enabling 5-micron level feature sizes. This novel catalyst has a unique feature, high density, and atomic-level deposition. Whereas conventional tin-palladium catalyst systems provide sporadic coverage over the substrate surface, the deposited catalyst covers the entire substrate surface. As a result, the catalyst enables improved uniformity of the copper deposition starting from the initial stage while providing higher adhesion and higher insulation resistance compared to the traditional catalysts used in SAP processes. This article discusses this new catalyst process, which both proposes a typical SAP process using the new catalyst and demonstrates the reliability improvements through a comparison between a new SAP PCB process and a conventional SAP PCB process.

Averatek Corporation

  1 2 Next

atomizer searches for Companies, Equipment, Machines, Suppliers & Information

Circuit Board, PCB Assembly & electronics manufacturing service provider

High Precision Fluid Dispensers
pressure curing ovens

High Throughput Reflow Oven
Encapsulation Dispensing, Dam and Fill, Glob Top, CSOB

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
SMT feeders

Training online, at your facility, or at one of our worldwide training centers"
pressure curing ovens

World's Best Reflow Oven Customizable for Unique Applications
Fully Automatic BGA Rework Station

500+ original new CF081CR CN081CR FEEDER in stock