Technical Library | 2021-09-02 08:17:07.0
We are a professional manufacturer of PCB depaneling machines, which is workable for all boards, including flex and regid boards, v-scored boards and routed boards. Laser pcb depaneling is non-contact way without mechanical stress,this solution is good for modern precision PCB depaneling. It has below advantages: 1. No dust The production environment of the circuit board industry is carried out in the dust-free workshop. The traditional pcb depaneling equipment, such as blade moving type machine, will inevitably produce residues and micro powder, which will pollute the 10000 and 1000 class dust-free workshops and affect the conductivity of products. The UV laser PCB cutting machine is a vaporization processing process, which will not produce dust and is conducive to the conductivity of the product. 2. High cutting precision The processing gap of high-precision traditional processing equipment can not reach the gap width of less than 100 microns, which will cause certain damage to the lines on the edge or PCBA circuit board containing components. The focus spot of the laser cutting machine is small, and the ultraviolet cold processing mode has little thermal impact on the edge of the circuit board. The cutting position accuracy is less than 50 microns, and the cutting size accuracy is less than 30 microns, which will not affect the edge of the circuit board, and the precision is high. 3. No stress Traditional processing methods generally have V-grooves, which will cause certain damage to the board in the manufacturing process. The UV laser PCB cutting machine can directly cut the bare board without making V-grooves. In addition, the traditional processing methods directly use tools to act on the circuit board, especially the stamping method has a great impact on the circuit board, which is easy to cause board deformation. The laser cutting machine is a non-contact processing mode, which acts on the surface of the material through the high-energy beam, which will not cause the influence of stress and the deformation and damage of the circuit board. 4. For special-shaped cutting, it is easy to automate The UV laser PCB cutting machine can cut for any shape without replacing any props and fixtures, and without steel mesh. The same equipment can meet special-shaped and straight-line cutting, which is easy to realize assembly line automatic production and high flexibility. It is easy to improve production efficiency and save production process and production cycle. In particular, it can quickly and efficiently meet the needs of rapid proofing, directly import the drawing, and then locate the cutting. 5. High compatibility The UV laser PCB cutting machine can process the materials around the circuit board, such as PCB, FPC, covering film, pet, reinforcing board, IC, ultra-thin metal cutting, etc. it has strong practicability, is compatible with the processing of a variety of materials, is easy to operate, can be imported into the drawing, does not need to adjust any mechanical parts, and is easy to operate and maintain. 6. Good cutting edge effect The cutting edge is smooth and neat without burr. It can be processed and formed directly according to the size of the drawing, which is conducive to improving the yield of the product. It can be directly installed into the subsequent process without further processing. For more details about UV laser depaneling, please feel free to contact us. www.pcbdepanelingrouter.com
Technical Library | 2021-05-06 13:45:49.0
The high-sensitive micro eddy-current testing (ECT) probe composed of planar meander coil as an exciter and spin-valve giant magneto-resistance (SV-GMR) sensor as a magnetic sensor for bare printed circuit board (PCB) inspection is proposed in this paper. The high-sensitive micro ECT probe detects the magnetic field distribution on the bare PCB and the image processing technique analyzes output signal achieved from the ECT probe to exhibit and to identify the defects occurred on the PCB conductor. The inspection results of the bare PCB model show that the proposed ECT probe with the image processing technique can be applied to bare PCB inspection. Furthermore, the signal variations are investigated to prove the possibility of applying the proposed ECT probe to inspect the high-density PCB that PCB conductor width and gap are less than 100 μm.
Technical Library | 2011-08-11 20:06:48.0
(Proceedings of the World Congress on Engineering 2011) A Printed Circuit Board (PCB) consists of circuit with electronic components mounted on surface. There are three main steps involved in manufacturing process, where the inspection of PCB is necessar
Sant Longowal Institute of Engineering and Technology (SLIET)
Technical Library | 1999-08-09 11:09:42.0
Organic Solderability Preservatives (OSPs), also known as anti-tarnish, on bare copper printed circuit boards (PCBs) are becoming more prevalent in the electronics industry as the low-cost replacement to Hot Air Solder Leveling (HASL). Introducing the anti-tarnish alternative into the customer sites requires working closely with the coating supplier, assembler, and Original Equipment Manufacturer (OEM) to gain a mutual understanding of respective processing concerns and finished product requirements.
Technical Library | 2012-12-26 20:18:50.0
①Single side The basic flexible printed circuit board is used of substrate of single side pcb materials and coated coverlay after finishing printed. ②Double sided That is made of substrates of double sided printed circuit board with double surface coated coverlays after finishing printed. ③Single copper foil with double coverlays Single copper foil coated different coverlays with double surface after finishing printed. ④Air gap Laminating two single printed circuit board together with no glue and bare design to meet high flexibility requirements. ⑤Multilayer That is designed for three and above circuit layers by laminating single side printed circuit board or double sided printed circuit board. ⑥COF IC chips and electronic components are installed on the flexible circuit board directly. ⑦Rigid-Flexible PCB Combined to rigid PCB with supporting and flexible PCB with high flexibility.
Technical Library | 2014-05-08 16:34:16.0
Bare die mounting on multi-device substrates has been in use in the microelectronics industry since the 1960s. The aerospace industry’s hybrid modules and IBM’s Solid Logic Technology were early implementations that were developed in the 1960’s. The technologies progressed on a steady level until the mid 1990’s when, with the advent of BGA packaging and chip scale packages, the microelectronics industry started a wholesale move to area array packaging. This paper outlines the challenges for both traditional wire-bond die attached to a printed wiring board (pwb), to the more recent applications of bumped die attached to a high performance substrate.
Technical Library | 2013-12-05 17:09:03.0
The functionality of electronic devices continues to increase at an extraordinary rate. Simultaneously consumers are expecting even more and in ever smaller packages. One enabler for shrinking electronics has been the flexible circuit board that allows the circuit board to fit a wide variety of shapes. Flexible printed circuits (FPC) have the capability to be very thin and can have unpackaged components directly attached using surface mount technology (SMT) and flip chip on flex technologies. Bare die can also be thinned and attached very close to the circuit board. However one caveat of high density flexible circuit boards with thin die is that they can be very fragile. The use of back side films and underfill can protect the die making circuits more robust. For underfill to work well it requires good adhesion to the circuit board which can mean that flux residues under the die normally must be removed prior to underfilling.
Technical Library | 2013-08-08 15:23:11.0
In this project Machine Vision PCB Inspection System is applied at the first step of manufacturing, i.e., the making of bare PCB. We first compare a PCB standard image with a PCB image, using a simple subtraction algorithm that can highlight the main problem-regions. We have also seen the effect of noise in a PCB image that at what level this method is suitable to detect the faulty image. Our focus is to detect defects on printed circuit boards & to see the effect of noise. Typical defects that can be detected are over etchings (opens), under-etchings (shorts), holes etc...
Technical Library | 2014-09-18 16:48:26.0
Two major drivers in electronic industry are electrical and mechanical miniaturization. Both induce major changes in the material selection as well as in the design. Nevertheless, the mechanical and thermal reliability of a Printed Circuit Board (PCB) has to remain at the same high level or even increase (e.g. multiple lead-free soldering). To achieve these reliability targets, extensive testing has to be done with bare PCB as well as assembled PCB. These tests are time consuming and cost intensive. The PCBs have to be produced, assembled, tested and finally a detailed failure analysis is required to be performed.This paper examines the development of our concept and has the potential to enable the prediction of the lifetime of the PCB using accelerated testing methods and finite element simulations.
Technical Library | 2016-09-08 16:27:49.0
In this investigation a test matrix was completed utilizing 900 electrodes (small circuit board with parallel copper traces on FR-4 with LPI soldermask at 6, 10 and 50 mil spacing): 12 ionic contaminants were applied in five concentrations to three different spaced electrodes with five replicas each (three different bare copper trace spacing / five replications of each with five levels of ionic concentration). The investigation was to assess the electrical response under controlled heat and humidity conditions of the known applied contamination to electrodes, using the IPC SIR (surface insulation resistance) J-STD 001 limits and determine at what level of contamination and spacing the ionic / organic residue has a failing effect on SIR.