Technical Library | 2016-10-27 16:24:23.0
Press-fit technology is a proven and widely used and accepted interconnection method for joining electronics assemblies. Printed Circuit Board Assembly Systems and typical functional subassemblies are connected through press-fit connectors. The Press-Fit Compliant Pin is a proven interconnect termination to reliably provide electrical and mechanical connections from a Printed Circuit Board to an Electrical Connector. Electrical Connectors are then interconnected together providing board to board electrical and mechanical inter-connection. Press-Fit Compliant Pins are housed within Connectors and used on Backplanes, Mid-planes and Daughter Card Printed Circuit Board Assemblies. High reliability OEM (Original Equipment Manufacturer) computer designs continue to use press-fit connections to overcome challenges associated with soldering, rework, thermal cycles, installation and repair. This paper investigates the technical roadmap for press fit technology, putting special attention to main characteristics such, placement and insertion, inspection, repair, pin design trends, challenges and solutions. Critical process control parameters within an assembly manufacturing are highlighted.
Technical Library | 2016-12-22 16:44:04.0
Particulate matter contamination is known to become wet and therefore ionically conductive and corrosive if the humidity in the environment rises above the deliquescence relative humidity (DRH) of the particulate matter. In wet condition, particulate matter can electrically bridge closely spaced features on printed circuit boards (PCBs), leading to their electrical failure. (...) The objective of this paper is to develop and describe a practical, routine means of measuring the DRH of minute quantities of particulate matter (1 mg or less) found on PCBs.
Technical Library | 2013-03-28 16:18:22.0
For the last couple of years, the main concerns regarding the electrical performance of blank PCB boards were impedance and ohmic resistance. Just recently, the need to reduce insertion loss came up in discussions with blank board customers (...) The paper describes the test vehicle and the testing methodology and discusses in detail the electrical performance characteristics. The influence of the independent variables on the performance characteristics is presented. Finally the thermal reliability of the boards built applying different copper foils and oxide replacements was investigated.
Technical Library | 2016-08-04 10:34:35.0
With the onset of 1900’s, the novelty of printed circuits boards got started with a profound concept of constructing an electrical path on an isolated surface of a board. The initial trend of printed circuit board got into a vain to develop and upgrade the radios and gramophones. Gradually the notion of ‘Through Hole Technique’ came into picture to produce a double sided PCB. In mid 1990’s the idea of auto assembly process was introduced by PCB Manufacturer USA. This was a point of modern touch to enhance the fabrication process with automated soldering technique. The research and development picked up a pace for end to end electronic solutions for defense and US army.
Technical Library | 2024-10-26 06:26:24.0
Copper pour is an essential design element in printed circuit boards (PCBs) that enhances thermal management, signal integrity, and electrical grounding. It involves filling unused areas on the board with copper, connecting them to power or ground planes. This feature helps manage heat dissipation, minimizes electromagnetic interference (EMI), and provides stable electrical grounding for complex circuits. While copper pour offers significant benefits, improper implementation may lead to manufacturing challenges like warping or soldering difficulties. This article explores the advantages of copper pour, the potential challenges, and how PCB Power integrates this design feature to optimize performance and durability. With advanced manufacturing processes, PCB Power ensures seamless copper pour integration for prototypes and large-scale production, offering turnkey PCB solutions for various industries.
Technical Library | 2018-08-22 14:05:42.0
Glass substrates are emerging as a key alternative to silicon and conventional organic substrates for high-density and high-performance systems due to their outstanding dimensional stability, enabling sub-5-µm lithographic design rules, excellent electrical performance, and unique mechanical properties, key in achieving board-level reliability at body sizes larger than 15 × 15 mm2. This paper describes the first demonstration of the board-level reliability of such large, ultrathin glass ball grid array (BGA) packages directly mounted onto a system board, considering both their thermal cycling and drop-test performances.
Technical Library | 2015-04-08 11:10:47.0
An electronic schematic describes the electrical connectivity of a piece of equipment or an entire system. It is made up of symbols that represent individual components and contains electrical and mechanical information and their related connectivity, along with other important data. Information contained within the schematic is packaged into a printed circuit board (PCB) where the mechanical footprint is placed onto the board and connectivity information is graphically displayed. The more accurate the information contained in the schematic is and the clearer it is presented, the more it contributes to a robust printed circuit board.
Technical Library | 2007-08-28 20:18:06.0
A conformal coating is defined as a thin polymeric material which covers the surface of an electronic assembly. These coatings are used to provide an electrically insulative and environmentally protective seal or cover to a completed printed circuit board (PCB).
Technical Library | 2021-06-07 19:10:16.0
The aim of this study was to compare leaching characteristics of metals from printed circuit boards (PCBs), taken from waste electrical and electronic equipment in the presence and in the absence of the iron-oxidizing bacteria, Acidithiobacillus ferrooxidans. A. ferrooxidans not only increases the leached concentration of Cu from the PCBs, but also inhibits the components of the 0K medium and leached Cu from forming precipitates such as libethenite (Cu2(PO4)(OH)), thereby assisting Cu recovery from the PCBs. In addition, the leached concentration of Pb from PCBs decreased in the presence of A. ferrooxidans, due to Pb forming amorphous precipitates. It is expected that Pb is not highly toxic to A. ferrooxidans. Consequently, A. ferrooxidans can be used as a cost-effective and environmentally friendly way to leach out valuable metals from PCBs as low-grade urban ore.
Technical Library | 2013-10-03 16:05:39.0
Printed Circuit Board (PCB) is an essential component of almost all electrical and electronic equipments. The rapid growth of the use of such equipments has contributed enormously to the generation of large quantity of waste PCBs. The WPCBs not only contain valuable metals but also a large variety of hazardous materials. Conventional treatments of such WPCBs have their own limitations. By pyrolysis of WPCBs, it is not only possible to obtain the organic part of it as a fuel or useful chemical but can make further processing to recover metals much easier and efficient. In the present work, a kinetic study on the low temperature pyrolysis of WPCBs using a thermogravimetric analyser has been attempted...