Technical Library | 2014-01-30 18:08:04.0
As of today, the electronic industry is aware of the requirements for their products to be lead free. All components are typically available in lead free quality. This comprises packages like BGAs with BGA solder balls to PCB board finishes like HASL. The suppliers are providing everything that is needed. It is harder to get the old tin leaded (SnPb) components for new applications today, than lead free ones. So why has not everybody changed over fully yet and how can the challenges be overcome? A big concern in this transition process is reflow soldering. The process temperatures for lead free applications became much higher. Related with this is more stress for all the components. It affects the quality and reliability of the electronic units and products...
Technical Library | 2015-06-18 12:42:57.0
In the recent past, the Light Emitting Diode (LED) was hailed as the new energy efficient light source that would never have to be replaced. There were claims of 50,000+ hrs lifetime for the humble LED. That story has changed over the last few years as the number and diversity of the LED based products has increased. This is not to say that the original evidence was incorrect, but the initial enthusiastic estimates from the labs did not match the ultimate test, customers. As a result of poor quality products affecting the overall opinion of LED based products, it is critical that manufacturers can be confident in the quality of their product. In current times we want to have products certified, checked and ensure that we have the best quality. For the purposes of this paper we will look at one aspect of LED product, and this is the Lumen maintenance and estimated lifetime. The method described here does not seek to replace using high quality rating labs, but hopefully will allow the manufacturer to know with confidence that their prototype product, upon going to certification labs will be of a high enough quality that no expensive re-designs are required.
Technical Library | 2019-10-03 14:27:01.0
Knowing how package warpage changes over temperature is a critical variable in order to assemble reliable surface mount attached technology. Component and component or component and board surfaces must stay relatively flat with one another or surface mount defects, such as head-in-pillow, open joints, bridged joints, stretched joints, etc. may occur. Initial package flatness can be affected by numerous aspects of the component manufacturing and design. However, change in shape over temperature is primarily driven by CTE mismatch between the different materials in the package. Thus material CTE is a critical factor in package design. When analyzing or modeling package warpage, one may assume that the package receives heat evenly on all sides, when in production this may not be the case. Thus, in order to understand how temperature uniformity can affect the warpage of a package, a case study of package warpage versus different heating spreads is performed.Packages used in the case study have larger form factors, so that the effect of non-uniformity can be more readily quantified within each package. Small and thin packages are less prone to issues with package temperature variation, due to the ability for the heat to conduct through the package material and make up for uneven sources of heat. Multiple packages and multiple package form factors are measured for warpage via a shadow moiré technique while being heated and cooled through reflow profiles matching real world production conditions. Heating of the package is adjusted to compare an evenly heated package to one that is heated unevenly and has poor temperature uniformity between package surfaces. The warpage is measured dynamically as the package is heated and cooled. Conclusions are drawn as to how the role of uneven temperature spread affects the package warpage.
1 |