Technical Library: date (Page 1 of 1)

Next Best Thing to a Close Shave: Mitigating the Risks of Tin Whiskers

Technical Library | 2010-09-23 18:22:39.0

If you've been in electronics for any length of time, the phenomenon of tin whiskers is something you've likely heard discussed (maybe in scared whispered tones). Tin whiskers certainly aren't a new problem. In fact, some of the first published reports of the occurrence date back to the 1940’s and 1950's. But, over half a century later, we're still talking about it.

Henkel Electronic Materials

Inclusion Voiding in Gull Wing Solder Joints

Technical Library | 2012-08-30 21:24:29.0

This paper provides definitions of the different voiding types encountered in Gull Wing solder joint geometries. It further provides corresponding reliability data that support some level of inclusion voiding in these solder joints and identifies the final criteria being applied for certain IBM Server applications. Such acceptance criteria can be applied using various available x-ray inspection techniques on a production or sample basis. The bulk of supporting data to date has been gathered through RoHS server exempt SnPb eutectic soldering operations but it is expected to provide a reasonable baseline for pending Pb-free solder applications.

IBM Corporation

Long Term Thermal Reliability of Printed Circuit Board Materials

Technical Library | 2016-09-15 17:10:40.0

This paper describes the purpose, methodology, and results to date of thermal endurance testing performed at the company. The intent of this thermal aging testing is to establish long term reliability data for printed wiring board (PWB) materials for use in applications that require 20+ years (100,000+ hours) of operational life under different thermal conditions. Underwriters Laboratory (UL) testing only addresses unclad laminate (resin and glass) and not a fabricated PWB that undergoes many processing steps, includes copper and plated through holes, and has a complex mechanical structure. UL testing is based on a 5000 hour expected operation life of the electronic product. Therefore, there is a need to determine the dielectric breakdown / degradation of the composite printed circuit board material and mechanical structure over time and temperature for mission critical applications.

Amphenol Printed Circuit Board Technology

IPC-1782 Standard for Traceability Supporting Counterfeit Components

Technical Library | 2018-01-04 11:05:34.0

Traceability has grown from being a specialized need for certain safety critical segments of the industry, to now being a recognized value-add tool for the industry as a whole. The perception of traceability data collection however persists as being a burden that may provide value only when the most rare and disastrous of events take place. Disparate standards have evolved in the industry, mainly dictated by large OEM companies in the market create confusion, as a multitude of requirements and definitions proliferate. The intent of the IPC-1782 project is to bring the whole principle and perception of traceability up to date. Traceability, as defined in this standard will represent the most effective quality tool available, becoming an intrinsic part of best practice operations, with the encouragement of automated data collection from existing manufacturing systems, integrating quality, reliability, predictive (routine, preventative, and corrective) maintenance, throughput, manufacturing, engineering and supply-chain data, reducing cost of ownership as well as ensuring timeliness and accuracy all the way from a finished product back through to the initial materials and granular attributes about the processes along the way.

Mentor Graphics

Origin and Quantification of Increased Core Loss in MnZn Ferrite Plates of a Multi-Gap Inductor

Technical Library | 2019-11-07 08:59:14.0

Inductors realized with high permeable MnZn ferrite require, unlike iron-powder cores with an inherent dis-tributed gap, a discrete air gap in the magnetic circuit to prevent saturation of the core material and/or tune the inductance value. This large discrete gap can be divided into several partial gaps in order to reduce the air gap stray field and consequently the proximity losses in the winding. The multi-gap core, realized by stacking several thin ferrite plates and inserting a non-magnetic spacer material between the plates, however, exhibits a substan-tial increase in core losses which cannot be explained from the intrinsic properties of the ferrite. In this paper, a comprehensive overview of the scientific literature regarding machining induced core losses in ferrite, dating back to the early 1970s, is provided which suggests that the observed excess core losses could be attributed to a deterioration of ferrite properties in the surface layer of the plates caused by mechanical stress exerted during machining.

Power Electronic Systems Laboratory (PES)

Stencil Printing Process Tools for Miniaturisation and High Yield Processing

Technical Library | 2023-06-12 19:00:21.0

The SMT print process is now very mature and well understood. However as consumers continually push for new electronic products, with increased functionality and smaller form factor, the boundaries of the whole assembly process are continually being challenged. Miniaturisation raises a number of issues for the stencil printing process. How small can we print? What are the tightest pitches? Can we print small deposits next too large for high mix technology assemblies? How closely can we place components for high density products? ...And then on top of this, how can we satisfy some of the cost pressures through the whole supply chain and improve yield in the production process! Today we are operating close to the limits of the stencil printing process. The area ratio rule (the relationship between stencil aperture opening and aperture surface area) fundamentally dictates what can and cannot be achieved in a print process. For next generation components and assembly processes these established rules need to be broken! New stencil printing techniques are becoming available which address some of these challenges. Active squeegees have been shown to push area ratio limits to new boundaries, permitting printing for next generation 0.3CSP technology. Results also indicate there are potential yield benefits for today's leading edge components as well. Stencil coatings are also showing promise. In tests performed to date it is becoming apparent that certain coatings can provide higher yield processing by extending the number of prints that can be performed in-between stencil cleans during a print process. Preliminary test results relating to the stencil coating technology and how they impact miniaturisation and high yield processing will be presented.

ASM Assembly Systems (DEK)

3-D Printed Electronics Additively Manufactured Electronics (AME)

Technical Library | 2023-06-02 17:37:43.0

This presentation of Nano Dimension Ltd. (the"Company") contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act and other securities laws. Words such as "expects," "anticipates, " "intends, " "plans, " "believes, " "seeks, " "estimates" and similar expressions or variations of such words are intended to identify forward-looking statements. For example, the Company is using forward-looking statements when it discuss the potential of its products, strategic growth plan, its business plan and investment plans, the size fits addressable market, market growth, and expected recurring revenue growth. Forward-looking statements are no historical facts, and are based upon management's current expectations, beliefs and projections, many of which, by their nature, are inherently uncertain. Such expectations, beliefs and projections are expressed in good faith. However, there can be assurance that management's expectations, beliefs and projections will be achieved, and actual results may differ materially from what is expressed in or indicated by the forward-looking statements. Forward-looking statements are subject to risks and uncertainties that could cause actual performance or results to differ materially from those expressed in the forward-looking statements. For a more detailed description of the risks and uncertainties affecting the Company, reference is made to the Company's reports filed from time to time with the Securities and Exchange Commission ("SEC"), including, but not limited to, the risks detailed in the Company's annual report for the year ended December 31st, 2020, filed with the SEC. Forward-looking statements speak only as of the date the statements are made. The Company assumes no obligation to update forward-looking statements to reflect actual results, subsequent events or circumstances, changes in assumptions or changes in other factors affecting forward-looking information except to the extent required by applicable securities laws. If the Company does update one or more forward-looking statements, no inference should be drawn that the Company will make additional updates with respect thereto or with respect to other forward-looking statements.

Nano Dimension

  1  

date searches for Companies, Equipment, Machines, Suppliers & Information

2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven
Win Source Online Electronic parts

World's Best Reflow Oven Customizable for Unique Applications
Win Source Online Electronic parts

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
PCB Handling with CE

Component Placement 101 Training Course
Electronic Solutions R3

Thermal Transfer Materials.