Technical Library | 2023-07-22 02:26:05.0
Patch offset; Uneven patches throughout the substrate (each substrate is offset in a different way); Only part of the substrate is offset; Only certain components are offset; The patch Angle is offset; Component absorption error; Laser identification (component identification) error; Nozzle loading and unloading error; Mark (BOC mark, IC mark) identification error; Image recognition error (KE-2060 only); Analysis of the main reasons for throwing material. More information about KINGSUN please Contact US at jenny@ksunsmt.com or visit www.ksunsmt.com
Technical Library | 2012-12-06 17:36:37.0
Inspection of integrated power electronics equals sophisticated test task. X-ray inspection based on 2D / 2.5D principles not utilizable. Full 3D inspection with adapted image capturing and reconstruction is necessary for test task.... First published in the 2012 IPC APEX EXPO technical conference proceedings.
Technical Library | 2024-04-29 21:39:52.0
In this paper, we develop and put into practice an Automatic Optical Inspection (AOI) system based on machine vision to check the holes on a printed circuit board (PCB). We incorporate the hardware and software. For the hardware part, we combine a PC, the three-axis positioning system, a lighting device and CCD cameras. For the software part, we utilize image registration, image segmentation, drill numbering, drill contrast, and defect displays to achieve this system. Results indicated that an accuracy of 5µm could be achieved in errors of the PCB holes allowing comparisons to be made. This is significant in inspecting the missing, the multi-hole and the incorrect location of the holes. However, previous work only focusses on one or other feature of the holes. Our research is able to assess multiple features: missing holes, incorrectly located holes and excessive holes. Equally, our results could be displayed as a bar chart and target plot. This has not been achieved before. These displays help users analyze the causes of errors and immediately correct the problems. Additionally, this AOI system is valuable for checking a large number of holes and finding out the defective ones on a PCB. Meanwhile, we apply a 0.1mm image resolution which is better than others used in industry. We set a detecting standard based on 2mm diameter of circles to diagnose the quality of the holes within 10 seconds.
Technical Library | 2020-03-04 23:53:17.0
Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.
Technical Library | 2020-07-22 19:24:33.0
Recent advancements in electronic packaging and image processing techniques have opened the possibility for optics-based portable eye tracking approaches, but technical and safety hurdles limit safe implementation toward wearable applications. Here, we introduce a fully wearable, wireless soft electronic system that offers a portable, highly sensitive tracking of eye movements (vergence) via the combination of skin-conformal sensors and a virtual reality system. Advancement of material processing and printing technologies based on aerosol jet printing enables reliable manufacturing of skin-like sensors, while the flexible hybrid circuit based on elastomer and chip integration allows comfortable integration with a user's head. Analytical and computational study of a data classification algorithm provides a highly accurate tool for real-time detection and classification of ocular motions. In vivo demonstration with 14 human subjects captures the potential of the wearable electronics as a portable therapy system, whose minimized form factor facilitates seamless interplay with traditional wearable hardware.
Technical Library | 2023-11-20 18:10:20.0
The electronics production is prone to a multitude of possible failures along the production process. Therefore, the manufacturing process of surface-mounted electronics devices (SMD) includes visual quality inspection processes for defect detection. The detection of certain error patterns like solder voids and head in pillow defects require radioscopic inspection. These high-end inspection machines, like the X-ray inspection, rely on static checking routines, programmed manually by the expert user of the machine, to verify the quality. The utilization of the implicit knowledge of domain expert(s), based on soldering guidelines, allows the evaluation of the quality. The distinctive dependence on the individual qualification significantly influences false call rates of the inbuilt computer vision routines. In this contribution, we present a novel framework for the automatic solder joint classification based on Convolutional Neural Networks (CNN), flexibly reclassifying insufficient X-ray inspection results. We utilize existing deep learning network architectures for a region of interest detection on 2D grayscale images. The comparison with product-related meta-data ensures the presence of relevant areas and results in a subsequent classification based on a CNN. Subsequent data augmentation ensures sufficient input features. The results indicate a significant reduction of the false call rate compared to commercial X-ray machines, combined with reduced product-related optimization iterations.
1 |