Technical Library | 2019-07-10 23:36:14.0
Pockets of gas, or voids, trapped in the solder interface between discrete power management devices and circuit assemblies are, unfortunately, excellent insulators, or barriers to thermal conductivity. This resistance to heat flow reduces the electrical efficiency of these devices, reducing battery life and expected functional life time of electronic assemblies. There is also a corresponding increase in current density (as the area for current conduction is reduced) that generates additional heat, further leading to performance degradation.
Technical Library | 2023-12-18 11:33:57.0
Elevate your electronic manufacturing game with the I.C.T-D600 SMT Dispensing Machine! Precision, safety, and efficiency in one powerful solution. In the dynamic realm of electronic manufacturing, precision and efficiency are not just preferences but essential requirements. Introducing the I.C.T-D600, an automatic glue dispenser machine engineered to enhance production processes across various applications. From chip encapsulation to PCB assembly, SMT red-glue dispensing, LED lens production, and medical device creation, SMT dispensing machine is a versatile solution tailored to meet the demands of the industry. Essential Attributes Of The I.C.T-D600 Automatic Glue Dispenser Machine 1. Compliance with European Safety Standards: The I.C.T-D600 SMT dispensing machine prioritizes not only efficiency but also safety, boasting compliance with European safety standards and holding a CE certificate. This ensures a secure and reliable manufacturing environment, aligning with global quality benchmarks. 2. International Component Quality: Internationally renowned components form the core of the D600 SMT dispensing machine. From Panasonic servomotors to MINTRON CCD, each element is carefully selected, guaranteeing high performance and durability. This commitment to quality components results in a machine that operates seamlessly, reducing downtime and maintenance costs. 3. Impressive Performance Metrics: The SMT dispensing machinedoesn't just meet expectations; it surpasses them with exceptional performance metrics: Maximum Guide Rail Speed: 400mm/s Fastest Injection Valve Speed: 20 spots/sec Dispensing Accuracy: ±0.02mm Repeated Accuracy: ±0.01mm Machine Characteristics: Core Part – Jet Valve The non-contact jet dispensing method ensures high-speed operation (max jet speed: 20 spots/second), high accuracy with a minimum dispensing volume of 5nl, and flexibility with extremely small dispensing volumes. The thermostatic system for the flow channel and sprayer ensures uniform glue temperature, resulting in low maintenance costs and an extended service life. Enhanced Capacity: Non-contact jet dispensing eliminates the need for Z-axis motion. Integrated temperature control technology reduces manual intervention. Automatic glue compensation minimizes artificial regulation time. Dual-track design reduces waiting time. Automatic visual location identification and compensation. Non-contact height detection with laser reduces height detection time. Flexibility: Capable of handling substrates or backings of various sizes. Optional heating module. Independent control of dual tracks with user-friendly software. Fast switching between different product lines. Universal platform suitable for various processes with different glues
Technical Library | 2009-04-09 20:43:09.0
Evidence has come to light that increased solder process temperatures, specifically for lead free solder, are dramatically shortening life expectancy of components; failures do not show up during initial test, but much later on in the products life,
Technical Library | 1999-07-20 09:28:38.0
With the increase in heat dissipation from microelectronic devices and the reduction in overall form factors, thermal management bmomes a more and more important element of electronic product design. Both the performance reliability and life expectancy of electronic equipment are inversely related to the component temperature of the equipment...
Technical Library | 2016-08-24 06:15:35.0
From consumer electronics to systems control, automotive technology to aviation and aerospace – today, electronics are absolutely essential in many sectors. They increasingly replace mechanical components, eliminating wear and tear and thereby extending the service life. What is easily forgotten in this regard is that electronics are also subject to the laws of mechanics. Mechanical test equipment is crucial to test components for the secure hold of welded, soldered or adhesive bonds. A new, mechanically intricate test probe with universal clamping jaws, that can even grasp the individual bonding wires, is in line with the trend toward ever smaller components. Serving as an actuator for these is a micro drive that can be precisely controlled using a miniaturised motion controller to relieve the control unit in the test device.
Technical Library | 2016-09-15 17:10:40.0
This paper describes the purpose, methodology, and results to date of thermal endurance testing performed at the company. The intent of this thermal aging testing is to establish long term reliability data for printed wiring board (PWB) materials for use in applications that require 20+ years (100,000+ hours) of operational life under different thermal conditions. Underwriters Laboratory (UL) testing only addresses unclad laminate (resin and glass) and not a fabricated PWB that undergoes many processing steps, includes copper and plated through holes, and has a complex mechanical structure. UL testing is based on a 5000 hour expected operation life of the electronic product. Therefore, there is a need to determine the dielectric breakdown / degradation of the composite printed circuit board material and mechanical structure over time and temperature for mission critical applications.
Technical Library | 2003-04-18 12:05:57.0
The popular tin (Sn) rich lead free solders are causing severe corrosion to many of the materials used in today's Wave Solder systems. Users are experiencing higher maintenance frequency and reduced life of wave solder machine components. This paper describes the effects of Sn rich solders in contact with various materials and discusses alternate methods to alleviate this problem.
Technical Library | 2014-10-30 01:48:43.0
The ultimate life of a microelectronics component is often limited by failure of a solder joint due to crack growth through the laminate under a contact pad (cratering), through the intermetallic bond to the pad, or through the solder itself. Whatever the failure mode proper assessments or even relative comparisons of life in service are not possible based on accelerated testing with fixed amplitudes, or random vibration testing, alone. Effects of thermal cycling enhanced precipitate coarsening on the deformation properties can be accounted for by microstructurally adaptive constitutive relations, but separate effects on the rate of recrystallization lead to a break-down in common damage accumulation laws such as Miner's rule. Isothermal cycling of individual solder joints revealed additional effects of amplitude variations on the deformation properties that cannot currently be accounted for directly. We propose a practical modification to Miner's rule for solder failure to circumvent this problem. Testing of individual solder pads, eliminating effects of the solder properties, still showed variations in cycling amplitude to systematically reduce subsequent acceleration factors for solder pad cratering. General trends, anticipated consequences and remaining research needs are discussed
Technical Library | 2021-07-27 14:54:26.0
Fast forward to current time. Today, our society embraces cleanliness. We expect, demand, and evaluate cleanliness in almost every aspect of our lives. We wash our cars and pets. We maintain high cleanliness standards in our hotels and public spaces. We require cleanliness in our restaurants and hospitals. We sanitize our hands throughout the day to prevent illness. We live in a clean-centric culture. While we drive clean cars, stay in clean hotels and eat clean food, there is one part of our life where we actually abandoned cleanliness. Many of the circuit assemblies that affect almost every aspect of our daily lives are no longer required to be clean. Even though our life experience confirms the link between cleanliness and reliability, happiness, health, and safety, circuit assemblies no longer maintain that "cleanliness is next to Godliness" status. This was not always the case. There was a time when virtually all circuit assemblies were cleaned. The removal of flux and other process-related contamination was commonplace. Cleaning was as normal as soldering. As we bring history into current time, one may relate the fall of Rome and its adoption of personal hygiene and the subsequent decline in human health to the large-scale abandonment of cleanliness expectations of circuit assemblies and the subsequent reliability issues it has created. How did this happen? Has history repeated itself?
Technical Library | 2019-07-30 15:29:50.0
Area Array microelectronic packages with small pitch and large I/O counts are now widely used in microelectronics packaging. The impact of various package design and materials/process parameters on reliability has been studied through extensive literature review. Reliability of Ceramic Column Grid Array (CCGA) package assemblies has been evaluated using JPL thermal cycle test results (-50°/75°C, -55°/100°C, and -55°/125°C), as well as those reported by other investigators. A sensitivity analysis has been performed using the literature data to study the impact of design parameters and global/local stress conditions on assembly reliability. The applicability of various life-prediction models for CCGA design has been investigated by comparing model's predictions with the experimental thermal cycling data. Finite Element Method (FEM) analysis has been conducted to assess the state of the stress/strain in CCGA assembly under different thermal cycling, and to explain the different failure modes and locations observed in JPL test assemblies.