Technical Library: mobile device rework station (Page 1 of 1)

BGA Placement on Rework Station

Technical Library | 2019-06-12 10:33:58.0

The success of ball grid array (BGA) placement on electronic assemblies is as much a matter of proper preparation and planning, as it is technique. In some designs, it is more appropriate to apply BGAs using a rework station that isolates the placement of the device, without subjecting the entire assembly to thermal reflow. This is especially beneficial in board constructions where the number of BGAs is limited, and the application of the solder paste is difficult, due to small pitch features that stretch the limitation of the stencil construction. Another application for rework stations, involves very large and thermally conductive BGAs, which will not uniformly reflow with other components on the assembly, and may require special process parameters for their proper placement. The most common use of BGA rework stations are for assemblies requiring BGA removal and replacements due to failures in the initial assembly stage.

ACI Technologies, Inc.

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Rework of New High Speed Press Fit Connectors

Technical Library | 2019-06-06 00:19:02.0

More and more people and things are using electronic devices to communicate. Subsequently, many electronic products, in particular mobile base stations and core network nodes, need to handle enormous amounts of data per second. One important link in this communication chain is high speed pressfit connectors that are often used to connect mother boards and back planes in core network nodes. These new high speed pressfit connectors have several hundreds of thin, short and weak pins that are prone to damage. Small variations in via hole dimensions or hole plating thickness affect the connections; if the holes are too small, the pins may be bentor permanently deformed and if the holes are too large they will not form gas tight connections.The goal of this project was to understand how rework of these new high speed pressfit connectors affects connection strengths, hole wall deformations and plating cracks.

HDP User Group

Rework Stations: Meeting the Challenges of Lead-Free Solders

Technical Library | 2015-02-12 13:32:52.0

Market forces, particularly legislation against the use of lead in electronics, have driven electronics manufacturers towards lead-free solders for PCB assembly and rework. This approach creates challenges because of the relatively high temperatures needed for lead-free soldering. Additionally, lead-free solder alloys typically do not wet or wick as easily as Sn63Pb37 leaded types. As PCBs often include both BGAs and simpler discrete devices, a lead-free rework capability should include a suitable soldering station and a BGA rework station. This article shows how such equipment can be adapted to overcome the lead-free issues and provide a successful reworking facility.

Cupio Yestech Europe

Rework Challenges for Smart Phones and Tablets

Technical Library | 2015-04-23 18:48:18.0

Smart phones are complex, costly devices and therefore need to be reworked correctly the first time. In order to meet the ever-growing demand for performance, the complexity of mobile devices has increased immensely, with more than a 70% greater number of packages now found inside of them than just a few years ago. For instance, 1080P HD camera and video capabilities are now available on most high end smart phones or tablet computers, making their production more elaborate and expensive. The printed circuit boards for these devices are no longer considered disposable goods, and their bill of materials start from $150.00, with higher end smart phones going up to $238.00, and tablets well over $300.00.

Metcal

Solder Joint Encapsulant Adhesive POP Assembly Solution

Technical Library | 2014-05-12 09:24:11.0

With the advancement of the electronic industry, Package on package (POP) has become increasingly popular IC package for electronic devices, particularly in mobile devices due to its benefits of miniaturization, design flexibility and cost efficiency. However, there are some issues that have been reported such as SIR drop due to small gap between top and bottom components, difficulty underfilling and rework due to stacked IC components and process yield issues. Some suppliers have reported using some methods such as dipping epoxy paste or epoxy flux to address these issues, but so far, no customer has reported using these methods or materials in their mass production. In order to address these issues for POP assembly, YINCAE has successfully developed a first individual solder joint encapsulant adhesive.

YINCAE Advanced Materials, LLC.

Solder Joint Encapsulant Adhesive Pop TMV High Reliability And Low Cost Assembly Solution

Technical Library | 2014-06-02 11:03:45.0

With the advancement of the electronic industry, package on package (POP) has become increasingly popular IC package for electronic devices, particularly POP TMV (Through Mold Vials) in mobile devices due to its benefits of miniaturization, design flexibility and cost efficiency. However, there are some issues that have been reported such as SIR drop due to small gap between top and bottom components, difficulty underfilling and rework due to stacked IC components and process yield issues. Some suppliers have reported using some methods such as dipping epoxy paste or epoxy flux to address these issues, but so far no customer has reported using these methods or materials in their mass production. In order to address these issues for POP TMV assembly, YINCAE has successfully developed and commercialized the first individual solder joint encapsulant adhesive for mass production for years.

YINCAE Advanced Materials, LLC.

Advantages of Bismuth-based Alloys for Low Temperature Pb-Free Soldering and Rework

Technical Library | 2012-12-20 14:36:09.0

The increased function of personal electronic devices, such as mobile phones and personal music devices, has driven the need for smaller and smaller active and passive components. This trend toward miniaturization, occurring at the same time as the conversion to RoHS-compliant lead-free assembly, has been a considerable challenge to the electronics assembly industry. The main reason for this is the higher reflow process temperatures required for Pb-free assembly. These higher temperatures can thermally damage the PCB and the components. In addition, the higher reflow temperatures can negatively affect the solder joint quality, especially when coupled with the smaller paste deposits required for these smaller components. If additional thermal processing is required, the risk increases even more. First Published at SMTA's International Conference on Soldering and Reliability in Toronto, May 2011

Indium Corporation

  1  

mobile device rework station searches for Companies, Equipment, Machines, Suppliers & Information

SMT spare parts - Qinyi Electronics

Component Placement 101 Training Course
Global manufacturing solutions provider

Reflow Soldering 101 Training Course
2024 Eptac IPC Certification Training Schedule

Best Reflow Oven
thru hole soldering and selective soldering needs

Training online, at your facility, or at one of our worldwide training centers"
PCB Depanelizers

Low-cost, self-paced, online training on electronics manufacturing fundamentals