Technical Library: multiple reflow component shift (Page 1 of 1)

SMT Printing Collapse Causes and Countermeasures --KINGSUN

Technical Library | 2023-12-15 03:06:24.0

The first process in the SMT industry is solder paste printing. After the solder paste printing is completed, electronic components are attached to PCB pads through a SMT machine, and then reflow soldered. A preliminary PCB board is roughly processed. SMT is a combination of multiple devices, and such a line is called an SMT production line. Our common PCBA is processed through this process. In SMT technology, each process is very important, and poor quality can be caused by different process defects. Today, we are discussing the causes and countermeasures of SMT printing collapse.

DONGGUAN KINGSUN AUTOMATION TECHNOLOGY CO.,LTD

Streamlining PCB Assembly and Test NPI with Shared Component Libraries

Technical Library | 2016-04-08 01:19:52.0

PCB assembly designs become more complex year-on-year, yet early-stage form/fit compliance verification of all designed-in components to the intended manufacturing processes remains a challenge. So long as librarians at the design and manufacturing levels continue to maintain their own local standards for component representation, there is no common representation in the design-to-manufacturing phase of the product lifecycle that can provide the basis for transfer of manufacturing process rules to the design level. A comprehensive methodology must be implemented for all component types, not just the minority which happen to conform to formal packaging standards, to successfully left-shift assembly and test DFM analysis to the design level and thus compress NPI cycle times.(...)This paper will demonstrate the technological components of the working solution: the logic for deriving repeatable and standardized package and pin classifications from a common source of component physical-model content, the method for associating DFA and DFT rules to those classifications, and the transfer of those rules to separate DFM and NPI analysis tools elsewhere in the design-through-manufacturing chain resulting in a consistent DFM process across multiple design and manufacturing organizations.

Mentor Graphics

Fill the Void V - Mitigation of Voiding for Bottom Terminated Components

Technical Library | 2020-12-29 20:55:46.0

Voiding in solder joints has been studied extensively, and the effects of many variables compared and contrasted with respect to voiding performance. Solder paste flux, solder powder size, stencil design, circuit board design, via-in-pad design, surface finish, component size, reflow profile, vacuum reflow, nitrogen reflow and other parameters have been varied and voiding quantified for each. The results show some differences in voiding performance with respect to most of these variables but these variables are not independent of each other. Voiding in solder joints is a complex issue that often requires multiple approaches to reduce voiding below required limits. This paper focuses on solutions to voiding for commonly used bottom terminated components (BTCs).

FCT ASSEMBLY, INC.

Mitigation of Pure Tin Risk by Tin-Lead SMT Reflow- Results of an Industry Round-Robin

Technical Library | 2017-10-12 15:45:25.0

The risk associated with whisker growth from pure tin solderable terminations is fully mitigated when all of the pure tin is dissolved into tin-lead solder during SMT reflow. In order to take full advantage of this phenomenon, it is necessary to understand the conditions under which such coverage can be assured. A round robin study has been performed by IPC Task group 8-81f, during which identical sets of test vehicles were assembled at multiple locations, in accordance with IPC J-STD-001, Class 3. All of the test vehicles were analyzed to determine the extent of complete tin dissolution on a variety of component types. Results of this study are presented together with relevant conclusions and recommendations to guide high reliability end-users on the applicability and limitations of this mitigation strategy.

Raytheon

Effects of Temperature Uniformity on Package Warpage

Technical Library | 2019-10-03 14:27:01.0

Knowing how package warpage changes over temperature is a critical variable in order to assemble reliable surface mount attached technology. Component and component or component and board surfaces must stay relatively flat with one another or surface mount defects, such as head-in-pillow, open joints, bridged joints, stretched joints, etc. may occur. Initial package flatness can be affected by numerous aspects of the component manufacturing and design. However, change in shape over temperature is primarily driven by CTE mismatch between the different materials in the package. Thus material CTE is a critical factor in package design. When analyzing or modeling package warpage, one may assume that the package receives heat evenly on all sides, when in production this may not be the case. Thus, in order to understand how temperature uniformity can affect the warpage of a package, a case study of package warpage versus different heating spreads is performed.Packages used in the case study have larger form factors, so that the effect of non-uniformity can be more readily quantified within each package. Small and thin packages are less prone to issues with package temperature variation, due to the ability for the heat to conduct through the package material and make up for uneven sources of heat. Multiple packages and multiple package form factors are measured for warpage via a shadow moiré technique while being heated and cooled through reflow profiles matching real world production conditions. Heating of the package is adjusted to compare an evenly heated package to one that is heated unevenly and has poor temperature uniformity between package surfaces. The warpage is measured dynamically as the package is heated and cooled. Conclusions are drawn as to how the role of uneven temperature spread affects the package warpage.

Akrometrix

  1  

multiple reflow component shift searches for Companies, Equipment, Machines, Suppliers & Information

Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
Win Source Online Electronic parts

Wave Soldering 101 Training Course
PCB Handling with CE

High Precision Fluid Dispensers
Encapsulation Dispensing, Dam and Fill, Glob Top, CSOB

Software for SMT placement & AOI - Free Download.
best pcb reflow oven

Training online, at your facility, or at one of our worldwide training centers"
PCB separator

Low-cost, self-paced, online training on electronics manufacturing fundamentals