Technical Library: passive components (Page 1 of 2)

Advanced Solder Paste Dispensing

Technical Library | 2008-10-15 20:16:12.0

Solder paste dispensing is usually considered a slow process. Due to the speed advantages, screen printing is used to apply solder paste whenever possible. However, screen printing is not always an option. Leveraging the high speed of piezo drive technology opens the door to a broad range of solder paste dispensing applications. The ability to dispense dots under 300-μm diameter, even as small as 125 μm, enables BGA rework, small geometry deposits for miniaturized passive components, electrical connections in recessed cavities, and RF shield attach for handheld devices.

ASYMTEK Products | Nordson Electronics Solutions

Miniaturization with Help of Reduced Component to Component Spacing

Technical Library | 2015-03-12 18:26:16.0

Miniaturization and the integration of a growing number of functions in portable electronic devices require an extremely high packaging density for the active and passive components. There are many ways to increase the packaging density and a few examples would be to stack them with Package on Package (PoP), fine pitch CSP's, 01005 and last but not least reduced component to component spacing for active and passive components (...)This paper will discuss different layouts, assembly and material selections to reduce component to component spacing down to 100-125um (4-5mil) from today’s mainstream of 150-200um (6-8mil) component to component spacing.

Flex (Flextronics International)

Principles of Analog In-Circuit Testing

Technical Library | 2012-12-26 14:18:24.0

Passive components including resistors, capacitors, inductors, and circuit-protection devices compose the highest percentage of all devices that are populated on today’s PCB assemblies. However, the successful isolation and testing of these components during ICT is perhaps the most challenging and the least understood of all modern-day validation practices.

Teradyne

Design and Process Development for the Assembly of 01005 Passive Components

Technical Library | 2018-03-05 11:22:48.0

Growing demands for smaller electronic assemblies has resulted in reduced sizes of passive components, requiring the introduction of newer components, such as the 01005 devices. Component miniaturization presents significant challenges to the traditional surface mount assembly process. A successful assembly solution for these 01005 devices should be repeatable and reproducible, and should include guidelines for (i) the selection of solder paste and (ii) appropriate stencil and substrate pad design, and should ensure strict process control standards.

Sanmina-SCI

Surface Mount Rework Techniques

Technical Library | 1999-05-09 12:51:38.0

This Technical Note outlines, step by step, the easiest ways to remove and replace surface mounted devices, using the lowest possible temperatures. This document discusses the following topics: Removal and replacement of discrete and passive components (capacitors, resistors, SOTs), Removal of two-sided components (SOICs, SOJs, TSOPs), Removal of quad components (PLCCs, QFPs), Replacement of quad components including fine-pitched devices.

Metcal

Tombstoning Of 0402 And 0201 Components: "A Study Examining The Effects Of Various Process And Design Parameters On Ultra-Small Passive Devices"

Technical Library | 2021-09-01 15:31:39.0

The long-standing trend in the electronics industry has been the miniaturization of electronic components. It is projected that this trend will continue as Original Equipment Manufacturers (OEMs) and Electronic Manufacturing Service (EMS) providers strive to reduce "real estate" on printed circuit boards. Typically, the miniaturization of components can be achieved by integration or size reduction. At present, size reduction is considered to be more cost effective and flexible than integration. Passive components, which are used in limiting current, terminating transmission lines and de-coupling switching noise, are the primary focus in size reduction due to their variety of uses.

Plexus Corporation

Realization of a New Concept for Power Chip Embedding

Technical Library | 2020-10-18 19:31:27.0

Embedded components technology has launched its implementation in volume products demanding high levels of miniaturization. Small modules with embedded dies and passive components on the top side are mounted in hand held devices. Smartphones have been the enablers for this new technology using the capabilities of embedded components. With this technological background another business field became interesting for embedded components – the embedded power electronics. The roadmap of the automotive industry shows a clear demand for miniaturized power electronic applications. Drivers are the regulations for the international fleet emissions which are focusing on three major trends.

AT & S Austria Technologie & Systemtechnik Aktiengesellschaft

Embedding Passive and Active Components: PCB Design and Fabrication Process Variations

Technical Library | 2016-06-16 15:29:31.0

Embedding components within the PC board structure is not a new concept. Until recently, however, most embedded component PC board applications adapted only passive elements. The early component forming processes relied on resistive inks and films to enable embedding of resistor and capacitors elements. Although these forming methods remain viable, many companies are choosing to place very thin discrete passive components and semiconductor die elements within the PC board layering structure. In addition to improving the products performance, companies have found that by reducing the component population on the PC board's surface, board level assembly is less complex and the PC board can be made smaller, The smaller substrate, even when more complex, often results in lower cost. Although size and cost reductions are significant attributes, the closer coupling of key elements can also contribute to improving functional performance.This paper focuses on six basic embedded component structure designs described in IPC-7092.

Vern Solberg - Solberg Technical Consulting

Advantages of Bismuth-based Alloys for Low Temperature Pb-Free Soldering and Rework

Technical Library | 2012-12-20 14:36:09.0

The increased function of personal electronic devices, such as mobile phones and personal music devices, has driven the need for smaller and smaller active and passive components. This trend toward miniaturization, occurring at the same time as the conversion to RoHS-compliant lead-free assembly, has been a considerable challenge to the electronics assembly industry. The main reason for this is the higher reflow process temperatures required for Pb-free assembly. These higher temperatures can thermally damage the PCB and the components. In addition, the higher reflow temperatures can negatively affect the solder joint quality, especially when coupled with the smaller paste deposits required for these smaller components. If additional thermal processing is required, the risk increases even more. First Published at SMTA's International Conference on Soldering and Reliability in Toronto, May 2011

Indium Corporation

A System Level Electrostatic Discharge Protection Modeling Methodology for Time Domain Analysis.

Technical Library | 2014-04-03 18:01:13.0

A system level modeling methodology is presented and validated on a simple case. It allows precise simulations of electrostatic discharge (ESD) stress propagation on a printed circuit board (PCB). The proposed model includes the integrated circuit (IC) ESD protection network, IC package, PCB lines, passives components, and externals elements. The impact of an external component on the ESD propagation paths into an IC is demonstrated. Resulting current and voltage waveforms are analyzed to highlight the interactions between all the elements of an operating PCB. A precise measurement technique was designed and used to compare with the simulation results. The model proposed in this paper is able to predict, with good accuracy, the propagation of currents and voltages into the whole system during ESD stress. It might be used to understand why failures occur and how to fix them with the most suitable solution.

Institute of Electrical and Electronics Engineers (IEEE)

  1 2 Next

passive components searches for Companies, Equipment, Machines, Suppliers & Information