Technical Library | 2024-03-19 15:53:34.0
Underfill is a composite material usually made of an epoxy polymer that fills gaps between a chip and its carrier or a finished package and the PCB substrate to connect the chip to the board.
Technical Library | 2007-11-01 17:16:07.0
This paper discusses micro-filled epoxy-based conducting adhesives modified with nanoparticles, conducting polymers, and low melting point (LMP) fillers for z-axis interconnections, especially as they relate to package level fabrication, integration,
Technical Library | 2007-11-21 11:39:13.0
This paper discusses laser micromachining of barium titanate (BaTiO3)-polymer nanocomposites and sol-gel thin films. In particular, recent developments on high capacitance, large area, and thin flexible embedded capacitors are highlighted.
Technical Library | 2010-12-22 13:59:14.0
This paper discusses polymer based nanogels, nanofluids and nanopastes for thermal interface material (TIM) applications. Nanopaste and nanogel formulated using controlled-sized particles to fill small bond lines is highlighted.
Technical Library | 2011-12-15 17:21:42.0
manganese dioxide or conductive polymer cathode. Higher stability is achieved by placement of the capacitor into an SMD case filled by an inert atmosphere and hermetically sealed. The long term stability testing performed on such hermetically sealed capac
Technical Library | 2022-01-05 22:51:59.0
200 °C) and high pressure. In this paper, a small-molecule assisted approach based on dynamic reaction was proposed to dissolve thermosetting polymers containing ester groups and recycle electronic components from PCBs.
Technical Library | 1999-07-21 09:00:55.0
Isotropic conductive adhesives are typically silver filled epoxy resins. Electronics assemblers have evaluated these materials for a variety of unique interconnect applications. The goal is a conductive polymer that exhibits similar reliability and performance to traditional solder while offering the benefits of a polymer structure such as low temperature processing and good thermal stability as well as the ability to bond a variety of substrates.
Technical Library | 2021-11-03 16:52:47.0
This paper proposes the integration of pulsed photonic sintering into multi-material additive manufacturing processes in order to produce multifunctional components that would be nearly impossible to produce any other way. Pulsed photonic curing uses high power Xenon flash lamps to thermally fuse printed nanomaterials such as conductive metal inks. To determine the feasibility of the proposed integration, three different polymer additive manufacturing materials were exposed to typical flash curing conditions using a Novacentrix Pulseforge 3300 system. FTIR analysis revealed virtually no change in the polymer substrates, thus indicating that the curing energy did not damage the polymer. Next, copper traces were printed on the same substrate, dried, and photonically cured to establish the feasibility of thermally fusing copper metal on the polymer additive manufacturing substrates. Although drying defects were observed, electrical resistivity values ranging from 0.081 to 0.103 Ω/sq. indicated that high temperature and easily oxidized metals can be successfully printed and cured on several commonly used polymer additive manufacturing materials. These results indicate that pulsed photonic curing holds tremendous promise as an enabling technology for next generation multimaterial additive manufacturing processes.
Technical Library | 2010-04-15 20:42:44.0
The high level of current interest in embedded passives in printed circuit boards is driven by the tremendous pressure to pack more circuitry into smaller spaces. However, adoption has been limited due to design, prototyping and infrastructure issues, as well as the stability and tolerances necessary for widespread replacement of discretes. The focus of this work has been to develop a polymer thick film resistor technology to incorporate reliable organic resistors inside printed wiring boards using standard PWB processing.
Technical Library | 2019-03-06 21:26:14.0
Electronic assemblies use a large variety of polymer materials with different mechanical and thermal properties to provide protection in harsh usage environments. However, variability in the mechanical properties such as the coefficient of thermal expansion and elastic modulus effects the material selection process by introducing uncertainty to the long term impacts on the reliability of the electronics. Typically, the main reliability issue is solder joint fatigue which accounts for a large amount of failures in electronic components. Therefore, it is necessary to understand the effect of polymer encapsulations (coatings, pottings and underfills) on the solder joints when predicting reliability.This paper presents the construction and validation of a thermo-mechanical tensile fatigue specimen. The thermal cycling range was matched with potting expansion properties in order to vary the magnitude of tensile stress imposed on solder joints