Technical Library: prepreg (Page 1 of 1)

Everything You Ever Wanted to Know About Laminates... but Were Afraid to Ask

Technical Library | 2020-11-29 22:02:49.0

It has been over 25 years since the earliest edition of "Everything You Ever Wanted to Know About Laminates...but Were Afraid to Ask" was pounded out on an old TRaSh-80 Computer. It has undergone periodic review and editing, including adaption for use on our website. (When I entered the industry Al Gore had not yet invented the internet.) Before I "retired" in 2004, we did another minor revision, but it was largely cosmetic, removing most references to the old military specification and introducing IPC-4101, the "new" specification for laminate and prepreg materials.

Arlon Technology Enabling Innovation

Development of Halogen Free, Low Loss Copper-Clad Laminates Containing a Novel Phosphonate Oligomer

Technical Library | 2017-08-24 16:53:20.0

With the rapid development of the information industry, increasing attention is being paid to the dielectric performance of base materials including copper-clad laminates (CCL) and prepregs. In addition to the increasingly high performance requirements of CCL's, the present global attention to less toxic products is leading to an increase in the use of halogen-free flame retardants in electronics. (...) This paper introduces a new phosphonate oligomer which can be used as a reactive flame retardant in epoxy based resin systems. Suitable conditions for the complete reaction between the phosphonate oligomer and epoxy resin are described and the resulting halogen-free laminates with improved properties such as low Df, low coefficient of thermal expansion (CTE), high peel strength, and good toughness are presented.

FRX Polymers Inc.

Copper/Epoxy Joints in Printed Circuit Boards: Manufacturing and Interfacial Failure Mechanisms

Technical Library | 2020-01-09 00:00:30.0

PCBs have a wide range of applications in electronics where they are used for electric signal transfer. For a multilayer build-up, thin copper foils are alternated with epoxy-based prepregs and laminated to each other. Adhesion between copper and epoxy composites is achieved by technologies based on mechanical interlocking or chemical bonding, however for future development, the understanding of failure mechanisms between these materials is of high importance. In literature, various interfacial failures are reported which lead to adhesion loss between copper and epoxy resins. This review aims to give an overview on common coupling technologies and possible failure mechanisms. The information reviewed can in turn lead to the development of new strategies, enhancing the adhesion strength of copper/epoxy joints and, therefore, establishing a basis for future PCB manufacturing.

Polymer Competence Center Leoben GmbH

Controlling Moisture in Printed Circuit Boards

Technical Library | 2019-05-01 23:18:27.0

Moisture can accelerate various failure mechanisms in printed circuit board assemblies. Moisture can be initially present in the epoxy glass prepreg, absorbed during the wet processes in printed circuit board manufacturing, or diffuse into the printed circuit board during storage. Moisture can reside in the resin, resin/glass interfaces, and micro-cracks or voids due to defects. Higher reflow temperatures associated with lead-free processing increase the vapor pressure, which can lead to higher amounts of moisture uptake compared to eutectic tin-lead reflow processes. In addition to cohesive or adhesive failures within the printed circuit board that lead to cracking and delamination, moisture can also lead to the creation of low impedance paths due to metal migration, interfacial degradation resulting in conductive filament formation, and changes in dimensional stability. Studies have shown that moisture can also reduce the glass-transition temperature and increase the dielectric constant, leading to a reduction in circuit switching speeds and an increase in propagation delay times. This paper provides an overview of printed circuit board fabrication, followed by a brief discussion of moisture diffusion processes, governing models, and dependent variables. We then present guidelines for printed circuit board handling and storage during various stages of production and fabrication so as to mitigate moisture-induced failures.

CALCE Center for Advanced Life Cycle Engineering

Moisture Effect on Properties of Out-of-Autoclave Laminates with Different Void Content

Technical Library | 2020-12-16 18:38:49.0

Fabrication of large structures using out-of-autoclave prepreg materials will lead to a great amount of savings in manufacturing costs. In the out-of-autoclave processing method, the presence of voids inside the laminate has been an issue due to the lack of high pressure during manufacturing. This study aims primarily to observe the moisture absorption response of composite samples containing different levels of void. By changing the vacuum level inside the bag during the manufacturing process, three different unidirectional laminates at three levels of void have been manufactured. After immersing the samples in warm water at 60°C for about one year, the moisture absorption level was monitored and then diffusion coefficients were calculated using Fick's law. Results show that the moisture absorption coefficient changes by %8 within the experimental range of void contents. The mechanical behaviour of these laminates has been studied at four different moisture levels by performing dynamic mechanical analysis (DMA) and short beam shear tests. Empirical results indicate that, in general, interlaminar shear strength and glass transition temperature decrease by moisture build-up inside the samples. DiBenedetto equation is proposed to make a correlation between the moisture content and glass transition temperature.

Concordia University

  1  

prepreg searches for Companies, Equipment, Machines, Suppliers & Information

Online Equipment Auction of Altronic: Small-Batch Surface Mount & Assembly Facility

High Precision Fluid Dispensers
Conductive Adhesive & Non-Conductive Adhesive Dispensing

High Throughput Reflow Oven
PCB Handling with CE

World's Best Reflow Oven Customizable for Unique Applications
Baja Bid Auction JUL 9-10, 2024

Reflow Soldering 101 Training Course