Technical Library | 2013-07-03 10:31:54.0
It has been demonstrated in numerous pieces of work that stencil printing, one of the most complex PCB assembly processes, is one of the largest contributors to defects (Revelino et el). This complexity extends to prototype builds where a small number of boards need to be assembled quickly and reliably. Stencil printing is becoming increasingly challenging as packages shrink in size, increase in lead count and require closer lead spacing (finer pitch). Prototype SMT assembly can be further divided between industrial and commercial work and the DIYer, hobbyist or researcher groups. This second group is highly price sensitive when it comes to the materials used for the board assembly as their funds are sourced from personal or research monies as opposed to company funds. This has led to development of a lower cost SMT printing stencil made from plastic film as opposed to the more traditional stainless steel stencil used by industrial and commercial users.This study compares the performance of these two traditional materials and their respective impact on solder paste printing including efficiency and print quality.
Technical Library | 2021-04-08 00:36:50.0
Understand the sensitivities of the identified factors to Creep Corrosion. Correlate experimental test conditions to environment classification standards.
Technical Library | 2015-10-08 17:40:35.0
With the push for ever improving performance on semiconductor component I/O interfaces, semiconductor components are being driven into a realm which makes them more sensitive to electrostatic discharge, potentially increasing in sensitivity by 50% every 3-5 years. Today, the majority of modern day semiconductor components are being designed to meet 250Volts of charge device model sensitivity, and that could decrease to 125Volts in the next 3-5 years, and could again decrease to 50Volts-70Volts in the following 3-5 years. The entire electronics industry must prepare for this challenge.
Technical Library | 2010-10-13 17:29:21.0
The number of failures caused by electrostatic discharges (ESD) has been increasing for some time now. So, it is necessary for everyone, who handles electrostatic sensitive devices (ESDS), to know the reasons of such failures. This presentation will give
Technical Library | 2016-03-31 17:39:52.0
Electrical overstress causes damage to sensitive components, including latent damage. A significant source of EOS is high-frequency noise in automated manufacturing equipment. This paper analyses sources of such noise, how it affects components and how to mitigate this problem.
Technical Library | 2022-09-12 14:07:47.0
Unique component handling issues can arise when an assembly factory uses highly-moisture sensitive surface mount devices (SMDs). This work describes how the distribution of moisture within the molded plastic body of a SMD is an important variable for survivability. JEDEC/IPC [1] moisture level rated packages classified as Levels 4-5a are shown to require additional handling constraints beyond the typical out-of-bag exposure time tracking. Nitrogen or desiccated cabinet containment is shown as a safe and effective means for long-term storage provided the effects of prior out-of-bag exposure conditions are taken into account. Moisture diffusion analyses coupled with experimental verification studies show that time in storage is as important a variable as floor-life exposure for highly-moisture sensitive devices. Improvements in floor-life survivability can be obtained by a handling procedure that includes cyclic storage in low humidity containment. SMDs that have exceeded their floor-life limits are analyzed for proper baking schedules. Optimized baking schedules can be adopted depending on a knowledge of the exposure conditions and the moisture sensitivity level of the device.
Technical Library | 2021-05-06 13:45:49.0
The high-sensitive micro eddy-current testing (ECT) probe composed of planar meander coil as an exciter and spin-valve giant magneto-resistance (SV-GMR) sensor as a magnetic sensor for bare printed circuit board (PCB) inspection is proposed in this paper. The high-sensitive micro ECT probe detects the magnetic field distribution on the bare PCB and the image processing technique analyzes output signal achieved from the ECT probe to exhibit and to identify the defects occurred on the PCB conductor. The inspection results of the bare PCB model show that the proposed ECT probe with the image processing technique can be applied to bare PCB inspection. Furthermore, the signal variations are investigated to prove the possibility of applying the proposed ECT probe to inspect the high-density PCB that PCB conductor width and gap are less than 100 μm.
Technical Library | 2022-09-08 16:40:50.0
Liquid seals in the automotive industry have to meet high functional quality standards and have to be applied in the shortest possible time in view of the high volume of workpieces. This market environment gives rise to innovations that guarantee maximum speed and quality from initial design to final results.
Technical Library | 2019-05-01 15:19:19.0
"Sealing" in dispensing and potting technology describes a process in which sensitive electronics surfaces are coated with a very thin layer of casting resin or protective varnish. It serves to protect against environmental influences and corrosion, resulting in a longer service life and operational reliability of the components. To ensure that the material is distributed homogeneously across the surface, this well-known "conformal coating" process is employed using low-viscosity casting resins.
Technical Library | 2013-03-21 21:24:49.0
This paper explores the behaviour of a copper test vehicle with multiple reflowed solder joints, which has direct relevance to ball grid arrays (BGA) and high density interconnect structures. The paper explores the relative stress conditions on the distributed joints and the sensitivity to ball joint shape... First published in the 2012 IPC APEX EXPO technical conference proceedings