Technical Library: solder dry out (Page 1 of 4)

Lead-Free BGA Rework-Transition Issues

Technical Library | 2007-08-16 13:34:31.0

While experienced inspectors may be able to determine the aesthetic differences between a lead-free PCB assembly and a tin-lead version, one cannot rely on the "experienced eye". "Less wetting out to the pad edges" (Figure A) and "graininess and lack of shininess of the solder joint" (Figure B) are typical comments about some lead-free solder joints. However, in cases where a Nitrogen atmosphere was present during the reflow of the solder joint (Figure C), there will be little visual differences between the lead free alloys and their tin-lead counterparts.

BEST Inc.

Hand Printing using Nanocoated and other High End Stencil Materials

Technical Library | 2019-05-29 23:10:30.0

There are times when a PCB prototype needs to be built quickly to test out a design. In such cases where it is known early on that there will be multiple iterations or that a "one and done" assembly will be made that there will be some SMT assemblers who choose to hand print solder paste onto the board using a "frameless" stencil. In such cases where hand printing is used, the consistency of the printing technique has typically been in question. Furthermore, the effectiveness of both the nanocoatings as well as the higher end stainless steel materials, which have been heretofore studied in controlled printing environments, will be evaluated for their impact on the hand printing process.The purpose of the study was to determine the effectiveness of select nanocoating materials as well as certain high end stainless steel stencil materials as they relate to the manual SMT printing process. A variety of nanocoatings were applied to SMT metal stencils and solder paste volume measurements were taken to compare the effectiveness.

BEST Inc.

When you pull out the nitrogen pipe of nitrogen cabinet

Technical Library | 2019-11-07 03:07:12.0

Many customers who have purchased the nitrogen cabinets have been in the mistaken belief that the air pipe can be pull down hard,so that it can cause the board to be damaged due to the hard pulling of the air pipe, which leads to the replacement of the penetrating board. Now, the following pictures are provided. Please note: Nitrogen cabinet is a optiomal choice for the microelectronics,semiconductor for humidity proof and anti-oxidation purpose,Climatest has put much efforts on the R&D of dry cabinets,as you know,our advangtage is to handle temperature and humidity,since early 1990s,our engineers began to test and research dry cabinet and nitrogen cabinet,all of our manufacturing process strictly follow ISO9001 standard,we supply to international customers for 20 years,if you are still looking for a reliable dry cabinet manufacturer to protect your MSD from moisture related damage,come to visit www.climatechambers.com,we are ready!

Symor Instrument Equipment Co.,Ltd

Symor ESD storage dry cabinet(Working principle)

Technical Library | 2019-04-08 23:21:29.0

Climatest Symor® adopts molecular sieve to dry air, the whole system is controlled by microcomputer, when humidity is high, It will start to absorb moisture,when the humidity reach the pre-set value, it will stop absorbing, and then discharge the water to outside the cabinet by heating,again and again by automatic control. The most effective and environment-friendly moisture-absorbing desiccant is molecular sieve, molecular sieve is the microporous crystal material synthesized by silicon and aluminium oxide. In order to keep the crystal net discharge to be zero, atoms with cations are located in the crystal structure.and the cation used in these synthetic crystals is usually sodium. At present, there are two kinds of molecular sieves widely used in the dry box industry: Class A and Class X. Molecular sieves are synthesized, shaped and activated under strictly controlled production processes. The whole controlled sythesis process can ensure consistency of the three-dimensional pore size. 3A molecular sieve pore size is 3 angstroms, 4A molecular sieve pore size is 4 angstroms; 13X molecular sieve pore size is 8.5 angstroms. The working principle of molecular sieve: Molecular sieves adsorb molecules onto the crystal surface by physical attraction force. Since 95% surface area of the molecular sieve is within aperture,it needs to screen the adjacent molecules by different size. Only small size molecules can enter into the inner adsorption surface of the molecular sieve through the crystal aperture. This selective adsorption phenomenon is called molecular sieve effect. The molecular sieve adsorption capacity and charge density (polarity) are further related to the adsorbed molecules. The molecular sieves can further distinguish which of the mixed molecules can be adsorbed and determine to what extent the charge density can allow the molecules to be adsorbed onto the crystal. Water molecules are particularly small (2.6 angstroms), that belong to highly polar molecules (very strong positive and negative electron density), and are easily adsorbed by molecular sieves, even under very low moisture condition,once the water molecules are adsorbed,they will be firmly fixed on the crystal. The environment-friendly moisture absorption device is equipped with molecular sieve. When it’s absorbing, the memory alloy controller is in tensile state, and the spring is in contractive state,which just make the valve contact the outer baffle, this insulates the outside air from inside dry box air to achieve dehumidification purpose; and after molecular sieve absorbed moisture inside dry box and become saturated, the program will automatically control the memory alloy device to shrink it so that the valve reaches the inner baffle position. Meanwhile, due to the shrinkage of the memory alloy, the spring is stretched and the valve is pulled out of the outer baffle,so that the moisture in molecular sieve will be discharged into the outside. after the dehumidifying process finished, the program automatically control and reset the memory alloy and spring,to restart absorbing status.

Symor Instrument Equipment Co.,Ltd

What is the main function of hot air dry oven?

Technical Library | 2019-09-25 04:36:01.0

What is the main function of hot air dry oven? Drying ovens are devices used to remove moisture and other solvents from the items placed inside them through a forced convection process, collecting it elsewhere so that the object becomes dehydrated. A drying oven causes objects to dry out through evaporation. Drying ovens use convection heating,also called air forced, in which the object is heated through air currents. Water from the object escapes into the air, raising the humidity level and causing the semi-solid membranes inside the oven to absorb the water. The end result is that the oven removes water from the object being dried, leaving it dehydrated. Drying ovens contain a system for forcing convection currents to develop, usually either a fan or turbine, which aids in the heating and drying process by ensuring that the hot air circulates,many ovens are equipped with an adjustable ventilation system that allows the user to ensure that the system has an adequate air supply. For details,pls visit our website: https://climatechambers.com/articles&latestnews/what-is-the-main-function-of-hot-air-dry-oven.html

Symor Instrument Equipment Co.,Ltd

Guidelines/recommendations "Drying of PCBs before soldering"

Technical Library | 2024-02-05 17:51:01.0

Objective:  Drying = reducing the humidity in PCB before soldering  Preventing delamination caused by thermal stress after moisture absorption Methods:  Drying in convection and/ or vacuum oven  Parameters subject to material type, soldering surface, layer count, time to soldering, layout (copper-plated areas)

ZVEI - German Electro and Digital Industry Association

A Novel Solution for No-Clean Flux not Fully Dried under Component Terminations

Technical Library | 2017-08-17 12:28:30.0

At SMT assembly, flux outgassing/drying is difficult for devices with poor venting channel, and resulted in insufficiently dried/burnt-off flux residue for no-clean process. Examples including: Large low stand-off components such as QFN, LGA Components covered under electromagnetic shield which has either no or few venting holes Components assembled within cavity of board Any other devices with small open space around solder joints

Indium Corporation

Stencil Design Using Regression:Following IPC 7525 a Way Better

Technical Library | 2010-03-25 06:26:37.0

The complexity of Printed Circuit Assembly process is increasing day by day and causing productivity issues in the industry, introducing ultra fine pitch components (pitch less than 15mil) in PCA is a challenge to minimize risk of defects as solder short, dry solder. This paper is focusing on minimizing these defects.

Larsen Toubro Medical Equipment & Systems Ltd

An Alternative Solvent with Low Global Warming Potential

Technical Library | 2015-02-05 20:25:41.0

In the past 20 yrs the solvent industry has gone through a great deal of change. In the early 1990s, CFC-113 and 1,1,1-trichloroethane were the workhorses of the industry. The Montreal Protocol to phase-out substances that deplete the Earth's protective Ozone Layer was implemented in the mid 1990s. After phase-out of the CFC solvents, the solvent industry fragmented to a variety of cleaning solutions. The electronics industry was a large user of CFC solvents and many of these applications changed to aqueous based cleaners (...) But those alternatives are now facing various problems: e.g. aqueous based cleaners use a lot of energy, require long drying times, use equipment that requires frequent maintenance, and require a large footprint; no-clean fluxes leave flux residues; and trichloroethylene and n-propyl bromide have toxicity issues. In response to these serious issues newer solvents and blends are being introduced in the marketplace

Honeywell International

Simple, Effective Process Control in Wave Soldering

Technical Library | 1999-06-23 20:29:21.0

This paper outlines the harmful effects of out-of-control process parameters and describes methods of measuring and tracking them to keep them in control. It addresses all critical variables of wave soldering: flux deposition, preheat application, conveyor speed, solder temperature and solder contact time.

Siemens Process Industries and Drives

  1 2 3 4 Next

solder dry out searches for Companies, Equipment, Machines, Suppliers & Information