Technical Library: wave solder short (Page 5 of 6)

A Practical Guide to Achieving Lead-Free Electronics Assembly

Technical Library | 2007-10-18 13:42:45.0

To successfully achieve lead-free electronics assembly, each participant in the manufacturing process, from purchasing to engineering to maintenance to Quality/Inspection, must have a solid understanding of the changes required of them. This pertains to considerations regarding design, components, PWBs, solder alloys, fluxe s, printing, reflow, wave soldering, rework, cleaning, equipment wear & tear and inspection.

AIM Solder

Boundary Scan Advanced Diagnostic Methods

Technical Library | 2013-02-14 12:54:29.0

Boundary-scan (1149.1) technology was originally developed to provide a far easier method to perform digital DC testing to detect intra-IC interconnect assembly faults, such as solder shorts and opens. Today's advanced IC technology now includes high-speed differential interfaces that include AC or DC coupling components loaded on the printed circuit assembly. Simple stuck-at-high/low test methods are not sufficient to detect all assembly fault conditions, which includes shorts, opens and missing components. Improved diagnostics requires detailed circuit analysis, predictive assembly fault simulation and more complex testing to isolate and accurately detect all possible assembly faults... First published in the 2012 IPC APEX EXPO technical conference proceedings

Agilent Technologies, Inc.

Water Soluble Solder Paste, Wet Behind the Ears or Wave of the Future

Technical Library | 2017-03-22 20:58:08.0

Water soluble lead-free solder paste is widely used in today’s SMT processes, but the industry is slowly moving away from water soluble solder pastes in favor of no-clean solder pastes. This shift in usage of solder paste is driven by an effort to eliminate the water wash process. Some components cannot tolerate water wash and elimination of water washing streamlines the SMT process. Despite this shift, certain applications lend themselves to the use of water soluble solder paste.This paper details the research and development of a new water soluble lead-free solder paste which improves on the performance characteristics of existing technologies.

FCT ASSEMBLY, INC.

Effect Of Silver In Common Lead-Free Alloys

Technical Library | 2021-09-08 14:03:55.0

There is need in the industry to understand the effects of silver presence in solders from various applications perspective. This article will attempt to present a review of the key published results on the silver containing alloys along with results of our internal studies on wave soldering, surface mount and BGA/CSP applications. Advantages and disadvantages of silver at different levels will be discussed. Specifically this report will focus on the effect of silver on process conditions, drop shock resistance, solder joint survivability in high strain rate situations, thermal fatigue resistance, Cu dissolution and effects of silver in combination with other alloy additives. Specific application problems demanding high silver level and other requiring silver level to the minimum will be discussed.

Cookson Electronics

Selective soldering in an optimized nitrogen atmosphere

Technical Library | 2023-11-14 19:24:08.0

In PCB circuit assemblies the trend is moving to more SMD components with finer pitch connections. The majority of the assemblies still have a small amount of through hole (THT) components. Some of them can't withstand high reflow temperatures, while others are there because of their mechanical robustness. In automotive applications these THT components are also present. Many products for cars, including steering units, radio and navigation, and air compressors also use THT technology to connect board-to-board, PCB's to metal shields or housings out of plastic or even aluminium. This is not a simple 2D plain soldering technology, as it requires handling, efficient thermal heating and handling of heavy (up to 10 kg) parts. Soldering technology becomes more 3D where connections have to be made on different levels. For this technology robots using solder wire fail because of the spattering of the flux in the wires and the long cycle time. In wave soldering using pallets the wave height is limited and pin in paste reflow is only a 2D application with space limitations.

Vitronics Soltec

High Reliability Lead-free Solder SN100C?Sn-0.7Cu-0.05Ni?Ge?

Technical Library | 2008-03-31 21:35:36.0

While the situation varies from country to country, nearly one year after the EU RoHS Directive came into force implementation of lead-free solder is progressing steadily. For lead-free soldering to be considered successful it is not sufficient just to have dealt with the challenges of mass production. It is also necessary to establish that the soldered joints produced are at least as reliable as those made with Sn-37Pb alloy. In this context "reliability" means the length of time in service that the initial functionality of the joint can be maintained. In this paper we will discuss some of the issues involved in solder joint reliability through a comparison of the properties of two alloys that are widely used for lead-free wave soldering, SAC305 (Sn-3.0Ag-0.5Cu) and the Sn, Cu, Ni, Ge alloy SN100C.

Nihon Superior Co., Ltd.

How to Use the Right Flux for the Selective Soldering Application

Technical Library | 2017-05-17 22:33:43.0

The selective soldering application requires a combination of performance attributes that traditional liquid fluxes designed for wave soldering applications cannot fulfill. First, the flux deposition on the board needs to be carefully controlled. Proper fine tuning of the flux physicochemical characteristics combined with a process optimization are mandatory to strike the right balance between solderability and reliability. However, localization of the flux residue through the drop jet process is not enough to guarantee the expected performance level. The flux needs to be designed to minimize the impact of unavoidable spreading and splashing events.From this perspective a fundamental understanding of the relationships between formulation and reliability is critical. In this application, thermal history of the flux residues (from room temperature to solder liquidus) is a key performance driver. Finally, it is necessary to conduct statistically designed experiments on industrial selective soldering machines in order to map the relationships between flux characteristics and selective process friendliness.

Kester

An Investigation into Lead-Free Low Silver Cored Solder Wire for Electronics Manufacturing Applications

Technical Library | 2019-01-09 19:19:52.0

The electronics industry has widely adopted Sn-3.0Ag-0.5Cu solder alloys for lead-free reflow soldering applications and tin-copper based alloys for wave soldering applications. In automated soldering or rework operations, users may work with Sn-Ag-Cu or Sn-Cu based alloys. One of the challenges with these types of lead-free alloys for automated / hand soldering operations, is that the life of the soldering iron tips will shorten drastically using lead-free solders with an increased cost of soldering iron tool maintenance/ tip replacement. Development was done on a new lead-free low silver solder rework alloy (Sn-0.3Ag-0.7Cu-0.04Co) in comparison with a number of alternative lead-free alloys including Sn-0.3Ag-0.7Cu, Sn-0.7Cu and Sn-3.0Ag-0.5Cu and tin-lead Sn40Pb solder in soldering evaluations.

Koki Company LTD

Pin in Paste Stencil Design for Notebook Mainboard

Technical Library | 2008-03-18 12:36:31.0

This paper examines the construction of a notebook mainboard with more than 2000 components and no wave soldering required. The board contains standard SMD, chipset BGAs, connectors, through hole components and odd forms placed using full automation and soldered after two reflow cycles under critical process parameters. However, state of the art technology does not help if the process parameters are not set carefully. Can all complex BGAs, THTs and even screws be soldered on a single stencil? What will help us overcome bridging, insufficient solder and thombstoning issues? This paper will demonstrate the placement of all odd shape components using pin-in-paste stencil design and full completion of the motherboard after two reflow cycles.

Vestel Electronic

Photonic Flash Soldering on Flex Foils for Flexible Electronic Systems

Technical Library | 2021-11-03 16:49:59.0

Ultrathin bare die chips were soldered using a novel soldering technology. Using homogeneous flash light generated by high-power xenon flash lamp the dummy components and the bare die NFC chips were successfully soldered to copper tracks on polyimide (PI) and polyethylene terephthalate (PET) flex foils by using industry standard Sn-Ag-Cu lead free alloys. Due to the selectivity of light absorption, a limited temperature increase was observed in the PET substrates while the chip and copper tracks were rapidly heated to a temperatures above the solder melting temperature. This allowed to successfully soldered components onto the delicate polyethylene foil substrates using lead-free alloys with liquidus temperatures above 200 °C. It was shown that by preheating components above the decomposition temperature of solder paste flux with a set of short low intensity pulses the processing window could be significantly extended compared to the process with direct illumination of chips with high intensity flash pulse. Furthermore, it was demonstrated that with localized tuning of pulse intensity components having different heat capacity could be simultaneously soldered using a single flash pulse.

NovaCentrix


wave solder short searches for Companies, Equipment, Machines, Suppliers & Information