Technical Library: 180 (Page 1 of 1)

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Silicon Test Wafer Specification for 180 nm Technology

Technical Library | 1999-08-05 10:45:36.0

In 1998, the International 300 mm Initiative (I300I) demonstration and characterization programs will focus on 180 nm technology capability. To support these activities, I300I and equipment supplier demonstration partners must use starting silicon wafers with key parameters specified at a level appropriate level for 180 nm processing, including contamination and lithographic patterning. This document describes I300I's silicon wafer specifications, as developed with the I300I Silicon Working Group (member company technical advisors) and SEMI Standards.

SEMATECH

PCBONLINE rigid capability

Technical Library | 2019-12-30 02:11:05.0

(ROHS, Halogen Free & Reach Compliance) FR-4 (Tg130-180): ShengYi, ITEQ, KB, Huazheng High Speed FR4, Ceramics & Telflon, Rogers

PCBONLINE

New Phosphorus-based Curing Agents for PWB

Technical Library | 2018-08-08 21:55:00.0

180 °C and Td >400 °C. In addition to a high thermal stability, Material A also shows a dielectric loss factor lower than commercial phosphorus-based flame retardants.

ICL-IP

Original Panasonic SMT Spare Parts 104691107604 NSC CHUCK 10469S0007

Technical Library | 2022-10-31 08:25:43.0

Material: Iron Model Name: NSC CHUCK Top Quality: 180g Automatic / Manual: Automatic Specification: Original New,copy New Shipping Method: FedEx, DHL, Etc.

Shenzhen Zhongrun Hi-Tech Technology Co., Ltd.

Microspring Characterization and Flip-Chip Assembly Reliability

Technical Library | 2014-05-29 13:48:14.0

Electronics packaging based on stress-engineered spring interconnects has the potential to enable integrated IC testing, fine pitch, and compliance not readily available with other technologies. We describe new spring contacts which simultaneously achieve low resistance ( 30 μm) in dense 2-D arrays (180 ~ 180-µm pitch). Mechanical characterization shows that individual springs operate at approximately 150-µN force. Electrical measurements and simulations imply that the interface contact resistance contribution to a single contact resistance is This paper suggests that integrated testing and packaging can be performed with the springs, enabling new capabilities for markets such as multichip modules.

Institute of Electrical and Electronics Engineers (IEEE)

Electromechanical Reliability Testing of Flexible Hybrid Electronics Incorporating FleX Silicon-on-Polymer ICs

Technical Library | 2021-08-18 01:24:20.0

Flexible Hybrid Electronics combine the best characteristics of printed electronics and silicon ICs to create high performance, ultra-thin, physically flexible systems. New static and dynamic tests are being developed to evaluate the performance of these systems. Dynamic radius of curvature and torsional test results are presented for a flexible hybrid electronics system with a FleX Silicon-on-Polymer operational amplifier manufactured in an 180nm CMOS process with 4-levels of metal interconnect mounted on a PET substrate.

American Semiconductor, Inc.

An Innovative Reliability Solution to Interconnect of Flexible/Rigid Substrates

Technical Library | 2016-01-12 11:03:35.0

With the pitch size of interconnect getting finer and finer, the bonding strength between flexible and rigid (e.g. PCB, ceramic) substrates becomes a serious issue because it is not strong enough to meet the customer’s requirement. Capillary underfill has been used to enhance the bonding strength between flexible and rigid substrates, but the enhancement is very limited, particularly for high temperature application. The bonding strength of underfilled flexible/rigid interconnect is dramatically decreased after being used at 180◦C, and the interconnects are weakened by the internal stress caused by the expansion of underfill at high temperatures. In order to resolve reliability issues of the interconnect between flexible/rigid substrates, solder joint encapsulant was implemented into the thermal compression bonding process, which was used to manufacture the interconnect between flexible/rigid substrates. Compared to the traditional process, the strength of the interconnect was doubled and the reliability was significantly improved in high temperature application.

YINCAE Advanced Materials, LLC.

NON-CONTACT FLUID DISPENSING WITH PS-8200 JETTING VALVE

Technical Library | 2015-08-18 18:39:13.0

Jetting Valve Technology Superior to Needle Dispensing Compared to traditional needle dispensing technology, jetting valve technology is the most effective method for quick and accurate fluid dispensing. Injection technology has many advantages, it provides a combination of high-speed, high quality and low cost production for fluid dispensing processes. Instead of putting focus on getting the application done, jet dispense technology focuses on performance, providing applications like underfill, potting and encapsulation with more precision than ever before. Improved Fluid Dispensing Speed and Accuracy Non-contact jetting valves offer a significant advantage over traditional needle dispense valves. Jetting Valve Dispenser precision reaches to 200µm with dot diameter or line width as small as 250µm and volumetric dispensing down to .0036µl. Minimum space between lines is 180µm and maximum fluid dispense speed is 200 dots/second. The following video illustrates quick, accurate fluid dispensing for an LED packaging application.

ETS - Energy Technology Systems, Inc.

  1  

180 searches for Companies, Equipment, Machines, Suppliers & Information