Technical Library: 2015 and 20mm (Page 1 of 2)

Rework Challenges for Smart Phones and Tablets

Technical Library | 2015-04-23 18:48:18.0

Smart phones are complex, costly devices and therefore need to be reworked correctly the first time. In order to meet the ever-growing demand for performance, the complexity of mobile devices has increased immensely, with more than a 70% greater number of packages now found inside of them than just a few years ago. For instance, 1080P HD camera and video capabilities are now available on most high end smart phones or tablet computers, making their production more elaborate and expensive. The printed circuit boards for these devices are no longer considered disposable goods, and their bill of materials start from $150.00, with higher end smart phones going up to $238.00, and tablets well over $300.00.

Metcal

Print Performance Studies Comparing Electroform and Laser-Cut Stencils

Technical Library | 2015-11-05 15:09:27.0

There has been recent activity and interest in Laser-Cut Electroform blank foils as an alternative to normal Electroform stencils. The present study will investigate and compare the print performance in terms of % paste transfer as well the dispersion in paste transfer volume for a variety of Electroform and Laser-Cut stencils with and without post processing treatments. Side wall quality will also be investigated in detail. A Jabil solder paste qualification test board will be used as the PCB test vehicle.

Photo Stencil LLC

Jetting Strategies for mBGAs a question of give and take...

Technical Library | 2015-04-02 20:12:58.0

The demands on volume delivery and positioning accuracy for solder paste deposits are increasing as the size and complexity of circuits continue to develop in the electronics industry. According to the iNEMI 2013 placement accuracy for these kinds of components will reach 6 sigma placement accuracy in X and Y of 30 um by 2023.This study attempts to understand the dependencies on piezo actuation pulse profile on jetting deposit quality, especially focused on positioning, satellites and shape. The correlation of deposit diameter and positioning deviation as a function of piezo actuation profile shows that positioning error for deposits increase almost monotonically with decreasing droplet volume irrespective of the piezo-actuation profile. The trends for shape and satellite levels are not as clear and demand further study.

Mycronic Technologies AB

Reliability of Embedded Planar Capacitors under Temperature and Voltage Stress

Technical Library | 2015-05-21 18:46:31.0

In this work the reliability of an embedded planar capacitor laminate under temperature and voltage stress is investigated. The capacitor laminate consisted of an epoxy-BaTiO3 composite sandwiched between two layers of copper. The test vehicle with the embedded capacitors was subjected to a temperature of 125oC and a voltage bias of 200 V for 1000 hours. Capacitance, dissipation factor, and insulation resistance were monitored in-situ. Failed capacitors exhibited a sharp drop in insulation resistance, indicating avalanche breakdown. The decrease in the capacitance after 1000 hours was no more than 8% for any of the devices monitored. The decrease in the capacitance was attributed to delamination in the embedded capacitor laminate and an increase in the spacing between the copper layers.

CALCE Center for Advanced Life Cycle Engineering

Tin Whisker Risk Mitigation for High-Reliability Systems Integrators and Designers

Technical Library | 2015-06-04 19:10:47.0

Integrators and designers of high-reliability systems exert little or no control over component-level plating processes that affect the propensity for tin whiskering. Challenges of how to assure long-term reliability, while continuing to use COTS parts plated with pure tin, continue to arise. An integrated, quantitative, standardized methodology is proposed whereby mitigation levels can be selected that are appropriate for specific applications of pure tin for given end-uses. A system of hardware end-use classification is proposed, together with recommended appropriate risk mitigation approaches. An updated version of the application-specific risk assessment algorithm is presented together with recommended thresholds for acceptability within the context of the hardware classifications.

Raytheon

Solder Paste Stencil Design for Optimal QFN Yield and Reliability

Technical Library | 2015-06-11 21:20:29.0

The use of bottom terminated components (BTC) has become widespread, specifically the use of Quad Flat No-lead (QFN) packages. The small outline and low height of this package type, improved electrical and thermal performance relative to older packaging technology, and low cost make the QFN/BTC attractive for many applications.Over the past 15 years, the implementation of the QFN/BTC package has garnered a great amount of attention due to the assembly and inspection process challenges associated with the package. The difference in solder application parameters between the center pad and the perimeter pads complicates stencil design, and must be given special attention to balance the dissimilar requirements

Lockheed Martin Corporation

Packaging Technology and Design Challenge for Fine Pitch Micro-Bump Cu-Pillar and BOT (Direct Bond on Substrate-Trace) Using TCNCP

Technical Library | 2015-12-02 18:32:50.0

(Thermal Compression with Non-Conductive Paste Underfill) Method.The companies writing this paper have jointly developed Copper (Cu) Pillar micro-bump and TCNCP(Thermal Compression with Non-Conductive Paste) technology over the last two+ years. The Cu Pillar micro-bump and TCNCP is one of the platform technologies, which is essentially required for 2.5D/3D chip stacking as well as cost effective SFF (small form factor) package enablement.Although the baseline packaging process methodology for a normal pad pitch (i.e. inline 50μm) within smaller chip size (i.e. 100 mm2) has been established and are in use for HVM production, there are several challenges to be addressed for further development for commercialization of finer bump pitch with larger die (i.e. ≤50μm tri-tier bond pad with the die larger than 400mm2).This paper will address the key challenges of each field, such as the Cu trace design on a substrate for robust micro-joint reliability, TCNCP technology, and substrate technology (i.e. structure, surface finish). Technical recommendations based on the lessons learned from a series of process experimentation will be provided, as well. Finally, this technology has been used for the successful launching of the company FPGA products with SFF packaging technology.

Altera Corporation

Advanced modelling technique achieves near to zero set up time and minimal tuning

Technical Library | 2015-04-29 03:29:56.0

Statistical Appearance Modelling technology enables an AOI system to “learn real world variation” based on operator interaction with inspection task results. This provides an accurate statistical description of normal variation in a product. With modelling technology, the user does not have to anticipate potential defects as the system will “flag” anything outside the “normal production range”. And, since the system is programmed with real production variation, it is sensitive to small subtle changes enabling reliable defect detection. Autonomous prediction of process variation enables an AOI system to be set up from a single PCB with production-ready performance. Setup time can be

CyberOptics Corporation

Method for the Manufacture of an Aluminum Substrate PCB and its Advantages

Technical Library | 2015-09-17 17:36:56.0

RoHS legislated restrictions on the materials used in electronics manufacture have imparted significant challenges on the electronics industry since their introduction in 2006. The greatest impacts have been felt by the mandated elimination of lead from electronic solder followed by the demand for the elimination of haloids from flame retardants used in traditional PCB laminates. In the years which have followed the electronics industry has been beset with a host of new challenges in its effort to comply. Failure mechanisms, both new and old, have surfaced which demand solution and the industry suppliers and manufacturing technologists have worked diligently to remedy those vexing faults through the development of a wide range of new materials and equipment for both board manufacture and assembly, along with modifications to the processes used in the manufacture and assembly of printed circuit boards.

Verdant Electronics

PCB Fabrication Processes and Their Effects on Fine Copper Barrel Cracks

Technical Library | 2015-12-23 16:57:27.0

The onset of copper barrel cracks is typically induced by the presence of manufacturing defects. In the absence of discernible manufacturing defects, the causes of copper barrel cracks in printed circuit board (PCB) plated through holes is not well understood. Accordingly, there is a need to determine what affects the onset of barrel cracks and then control those causes to mitigate their initiation.The objective of this research is to conduct a design of experiment (DOE) to determine if there is a relationship between PCB fabrication processes and the prevalence of fine barrel cracks. The test vehicle used will be a 16-layer epoxy-based PCB that has two different sized plated through holes as well as buried vias.

Raytheon

  1 2 Next

2015 and 20mm searches for Companies, Equipment, Machines, Suppliers & Information