Technical Library: back to back bga (Page 1 of 1)

Dispensing EMI Shielding Materials: An Alternative to Sputtering

Technical Library | 2020-02-26 23:24:02.0

Shielding electronic systems against electromagnetic interference (EMI) has become a hot topic. Technological advancements toward 5G standards, wireless charging of mobile electronics, in-package antenna integration, and system-inpackage (SiP) adoption are driving the need to apply more effective EMI shielding and isolation to component packages and larger modules. For conformal shielding, EMI shielding materials for exterior package surfaces have mostly been applied with a physical vapor deposition (PVD) process of sputtering, leveraging front-end packaging technologies to back-end packaging applications. However, sputtering technology challenges in scalability and cost along with advancements in dispensable materials are driving considerations for alternative dispensing techniques for EMI shielding.

ASYMTEK Products | Nordson Electronics Solutions

Dispensing EMI Shielding Materials: An Alternative to Sputtering

Technical Library | 2021-06-15 15:17:33.0

Shielding electronic systems against electromagnetic interference (EMI) has become a hot topic. Technological advancements toward 5G standards, wireless charging of mobile electronics, in-package antenna integration, and system-in-package (SiP) adoption are driving the need to apply more effective EMI shielding and isolation to component packages and larger modules. For conformal shielding, EMI shielding materials for exterior package surfaces have mostly been applied with a physical vapor deposition (PVD) process of sputtering, leveraging front-end packaging technologies to back-end packaging applications. However, sputtering technology challenges in scalability and cost along with advancements in dispensable materials are driving considerations for alternative dispensing techniques for EMI shielding.

ASYMTEK Products | Nordson Electronics Solutions

Next Best Thing to a Close Shave: Mitigating the Risks of Tin Whiskers

Technical Library | 2010-09-23 18:22:39.0

If you've been in electronics for any length of time, the phenomenon of tin whiskers is something you've likely heard discussed (maybe in scared whispered tones). Tin whiskers certainly aren't a new problem. In fact, some of the first published reports of the occurrence date back to the 1940’s and 1950's. But, over half a century later, we're still talking about it.

Henkel Electronic Materials

An Engineer's Guide to Testing and Evaluating The Performance of Desiccant Bags for the Protection of Critical Moisture Sensitive Devices

Technical Library | 2020-08-16 14:50:25.0

Not all desiccant bags are created or perform equally. Performance measures include: a) How long does desiccant last? b) How much are can be desiccated in a given area? c) How much moisture is retained, and or released back into the atmosphere? This article walks engineers through various test they can perform to determine efficacy. Additionally, the article highlight between adsorption vs adsorption.

Steel Camel

Advanced Thermal Interface Materials for Enhanced Flip Chip BGA

Technical Library | 2010-01-06 22:27:03.0

Increased functionality and performance requirements for microprocessors and ASICs have resulted in a trend to package these devices in the flip-chip BGA form factor (FCBGA). Because these devices use in excess of 40-100 Watts of power, their packages must dissipate heat in an extremely efficient manner. Most semiconductor companies have developed some type of thermally enhanced FCBGA package that provides heat dissipation through the back of the die to a heat spreader.

Henkel Electronic Materials

How to fill water into the temperature humidity test chamber? (2/2)

Technical Library | 2019-05-16 02:25:15.0

limatest Symor wants to tell you that humidity is not only the most important thing in the chamber, but also the temperature In order to facilitate customers to add water, our temperature and humidity test chamber is to place the water tank at back of the equipment.Just open the baffle to see the water tank and the water level meter next to the tank,then add enough water to the tank. However, in addition to manual water addition, our temperature and humidity test chamber has equipment that can automatically add water. Only by connecting the water pipe at the water filling port can it be automatically replenished when there is a shortage of water, which is suitable for high humidity test for a long time.

Symor Instrument Equipment Co.,Ltd

Transient Solder Separation of BGA Solder Joint During Second Reflow Cycle

Technical Library | 2019-05-15 22:26:02.0

As the demand for higher routing density and transfer speed increases, Via-In-Pad Plated Over (VIPPO) has become more common on high-end telecommunications products. The interactions of VIPPO with other features used on a PCB such as the traditional dog-bone pad design could induce solder joints to separate during the second and thereafter reflows. The failure has been successfully reproduced, and the typical failure signature of a joint separation has been summarized.To better understand the solder separation mechanism, this study focuses on designing a test vehicle to address the following three perspectives: PCB material properties, specifically the Z-direction or out-of-plane Coefficient of Thermal Expansion (CTE); PCB thickness and back drill depth; and quantification of the driving force magnitude beyond which the separation is due to occur.

Cisco Systems, Inc.

Optimising Solder Paste Volume for Low Temperature Reflow of BGA Packages

Technical Library | 2020-09-23 21:37:25.0

The need to minimise thermal damage to components and laminates, to reduce warpage-induced defects to BGA packages, and to save energy, is driving the electronics industry towards lower process temperatures. For soldering processes the only way that temperatures can be substantially reduced is by using solders with lower melting points. Because of constraints of toxicity, cost and performance, the number of alloys that can be used for electronics assembly is limited and the best prospects appear to be those based around the eutectic in the Bi-Sn system, which has a melting point of about 139°C. Experience so far indicates that such Bi-Sn alloys do not have the mechanical properties and microstructural stability necessary to deliver the reliability required for the mounting of BGA packages. Options for improving mechanical properties with alloying additions that do not also push the process temperature back over 200°C are limited. An alternative approach that maintains a low process temperature is to form a hybrid joint with a conventional solder ball reflowed with a Bi-Sn alloy paste. During reflow there is mixing of the ball and paste alloys but it has been found that to achieve the best reliability a proportion of the ball alloy has to be retained in the joint, particular in the part of the joint that is subjected to maximum shear stress in service, which is usually the area near the component side. The challenge is then to find a reproducible method for controlling the fraction of the joint thickness that remains as the original solder ball alloy. Empirical evidence indicates that for a particular combination of ball and paste alloys and reflow temperature the extent to which the ball alloy is consumed by mixing with the paste alloy is dependent on the volume of paste deposited on the pad. If this promising method of achieving lower process temperatures is to be implemented in mass production without compromising reliability it would be necessary to have a method of ensuring the optimum proportion of ball alloy left in the joint after reflow can be consistently maintained. In this paper the author explains how the volume of low melting point alloy paste that delivers the optimum proportion of retained ball alloy for a particular reflow temperature can be determined by reference to the phase diagrams of the ball and paste alloys. The example presented is based on the equilibrium phase diagram of the binary Bi-Sn system but the method could be applied to any combination of ball and paste alloys for which at least a partial phase diagram is available or could be easily determined.

Nihon Superior Co. Ltd

  1  

back to back bga searches for Companies, Equipment, Machines, Suppliers & Information

Selective soldering solutions with Jade soldering machine

Stencil Printing 101 Training Course
Pillarhouse USA for Selective Soldering Needs

Wave Soldering 101 Training Course
Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

World's Best Reflow Oven Customizable for Unique Applications