Technical Library: bga ball attach process (Page 1 of 3)

Advanced Solder Paste Dispensing

Technical Library | 2008-10-15 20:16:12.0

Solder paste dispensing is usually considered a slow process. Due to the speed advantages, screen printing is used to apply solder paste whenever possible. However, screen printing is not always an option. Leveraging the high speed of piezo drive technology opens the door to a broad range of solder paste dispensing applications. The ability to dispense dots under 300-μm diameter, even as small as 125 μm, enables BGA rework, small geometry deposits for miniaturized passive components, electrical connections in recessed cavities, and RF shield attach for handheld devices.

ASYMTEK Products | Nordson Electronics Solutions

BGA Placement on Rework Station

Technical Library | 2019-06-12 10:33:58.0

The success of ball grid array (BGA) placement on electronic assemblies is as much a matter of proper preparation and planning, as it is technique. In some designs, it is more appropriate to apply BGAs using a rework station that isolates the placement of the device, without subjecting the entire assembly to thermal reflow. This is especially beneficial in board constructions where the number of BGAs is limited, and the application of the solder paste is difficult, due to small pitch features that stretch the limitation of the stencil construction. Another application for rework stations, involves very large and thermally conductive BGAs, which will not uniformly reflow with other components on the assembly, and may require special process parameters for their proper placement. The most common use of BGA rework stations are for assemblies requiring BGA removal and replacements due to failures in the initial assembly stage.

ACI Technologies, Inc.

BGA Reballing

Technical Library | 2019-05-30 10:59:13.0

In the current economic environment, the ability to reuse ball grid array(BGA) components that have failed due to solder defects may be an efficient way for electronics manufacturers to reduce costs. Cost may not be the only driving factor in the decision to engage in this recycling practice. The increasing demands placed upon the complexity of microprocessors and integrated circuits (ICs) has decreased the availability of some components, and increased their lead time. Because of this, reballing may provide a means to meet schedule, reduce rework turn-around time, and give a manufacturer a decisive advantage over other companies in an ever increasingly competitive market. This article will discuss the process of reballing BGA components (Figure 1), examining preparation (the preform method, the screen method), and cleaning and bake-out.

ACI Technologies, Inc.

Pad Cratering

Technical Library | 2020-05-08 18:22:31.0

A customer contacted the Helpline to perform analysis on a lead-free assembly which exhibited intermittent functionality. The lead-free assembly exhibiting intermittent functionality when pressure was applied to the ball grid array (BGA) packages. Industrial adaptation of a Restriction of Hazardous Substances (RoHS) compliant solder standard has created a new host of failure modes observed in lead-free assemblies. Pad cratering occurs when fractures propagate along the epoxy resin layer on the underside of the BGA connecting pads. While originating from process, design, and end use conditions, it is the combination of a rigid lead-free solder with inflexible printed circuit board (PCB) laminates that has advanced the prevalence of this condition. Pad cratering is simply the result of mechanical stress exceeding material limitations.

ACI Technologies, Inc.

Investigation of PCB Failure after SMT Manufacturing Process

Technical Library | 2019-10-21 09:58:50.0

An ACI Technologies customer inquired regarding printed circuit board(PCB) failures that were becoming increasingly prevalent after the SMT (surface mount technology) manufacturing process. The failures were detected by electrical testing, but were undetermined as to the location and specific devices causing the failures. The failures were suspected to be caused predominately in the BGA (ball grid array) devices located on specific sites on this 16 layer construction. Information that was provided on the nature of the failures (i.e., opens or shorts) included high resistance shorts that were occurring in those specified areas. The surface finish was a eutectic HASL (hot air solder leveling) and the solder paste used was a water soluble Sn/Pb(tin/lead).

ACI Technologies, Inc.

Ball Grid Array (BGA) Voiding Affecting Functionality

Technical Library | 2020-11-09 16:59:53.0

A customer contacted ACI Technologies regarding a high failure rate of their assemblies. They provided assemblies to be X-rayed and inspected for the purpose of identifying any process related issues such as (but not limited to) solder and assembly workmanship and evidence of damage due to moisture related problems during reflow (a.k.a. "popcorning"). Moisture damage usually appears as physical damage to the component. The first indication of moisture damage would be externally observable changes to the package in the form of bulging or fractures to the outer surface of the component, an example of which is shown in Figure 1. Internally observable indicators of moisture damage typically include fractures to the die inside the package and lifted or fractured wire bonds. These conditions would be apparent during transmissive X-ray inspection. Another symptom of moisture related damage would be inconsistent solder joint sizes that result from package deformation during the liquidus phase of the reflow process. None of these indicators of moisture related damage were present on the customer samples.

ACI Technologies, Inc.

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Selective Solder Paste Deposition Reliability Test Results.

Technical Library | 2007-06-21 17:03:16.0

The rapid assimilation of Ball Grid Array (BGA) and other Area Array Package technology in the electronics industry is due to the fact that this package type allows for a greater I/O count in a smaller area while maintaining a pitch that allows for ease of manufacture (...) While there have been several studies comparing these two attachment methods, this study highlights the effect of rework technique on the electrical characteristics and reliability of reworked BGAs.

BEST Inc.

BGA Rework Process

Technical Library | 2017-02-01 02:20:42.0

BGA Rework Course encompasses the skills necessary to perform rework of electronic printed circuit boards to include PBGA and CBGA technologies. There should be 'one-stop' solution, that offers a wide range of ball grid array rework and repair services.

BEST Inc.

Microstructure and Intermetallic Formation in SnAgCu BGA Components Attached With SnPb Solder Under Isothermal Aging

Technical Library | 2022-10-31 17:09:04.0

The global transition to lead-free (Pb-free) electronics has led component and equipment manufacturers to transform their tin–lead (SnPb) processes to Pb-free. At the same time, Pb-free legislation has granted exemptions for some products whose applications require high long-term reliability. However, due to a reduction in the availability of SnPb components, compatibility concerns can arise if Pb-free components have to be utilized in a SnPb assembly. This compatibility situation of attaching a Pb-free component in a SnPb assembly is generally termed "backward compatibility." This paper presents the results of microstructural analysis of mixed solder joints which are formed by attaching Pb-free solder balls (SnAgCu) of a ball-grid-array component using SnPb paste. The experiment evaluates the Pb phase coarsening in bulk solder microstructure and the study of intermetallic compounds formed at the interface between the solder and the copper pad.

CALCE Center for Advanced Life Cycle Engineering

  1 2 3 Next

bga ball attach process searches for Companies, Equipment, Machines, Suppliers & Information

Solder Paste Dispensing

Training online, at your facility, or at one of our worldwide training centers"
Shenzhen Honreal for all your SMT Equipment needs

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Global manufacturing solutions provider

Easily dispense fine pitch components with ±25µm positioning accuracy.
Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.