Technical Library: bga warpage (Page 1 of 1)

Effects of Package Warpage on Head-in-Pillow Defect

Technical Library | 2017-07-06 15:50:17.0

Head-in-pillow (HiP) is a BGA defect which happens when solder balls and paste can't contact well during reflow soldering. Package warpage was one of the major reasons for HiP formation. In this paper, package warpage was measured and simulated. It was found that the package warpage was sensitive to the thickness of inside chips. A FEM method considering viscoelastic property of mold compound was introduced to simulate package warpage. The CTE mismatch was found contributes to more than 90% of the package warpage value when reflowing at the peak temperature. A method was introduced to measure the warpage threshold, which is the smallest warpage value that may lead to HiP. The results in different atmospheres showed that the warpage threshold was 50μm larger in N2 than that in air, suggesting that under N2 atmosphere the process window for HiP defects was larger than that under air, which agreed with the experiments.

Samsung Electronics

Hidden Head-In-Pillow soldering failures

Technical Library | 2022-12-23 20:44:54.0

One of the upcoming reliability issues which is related to the lead-free solder introduction, are the headin-pillow solderability problems, mainly for BGA packages. These problems are due to excessive package warpage at reflow temperature. Both convex and concave warpage at reflow temperature can lead to the head-in-pillow problem where the solder paste and solder ball are in mechanical contact but not forming one uniform joint. With the thermo-Moiré profile measurements, this paper explains for two flex BGA packages the head-in-pillow. Both local and global height differences higher than 100 µm have been measured at solder reflow temperature. This can be sufficient to have no contact between the molten solder ball and solder paste. Finally, the impact of package drying is measured

IMEC

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.

A PROCEDURE TO DETERMINE HEAD-IN-PILLOW DEFECT AND ANALYSIS OF CONTRIBUTING FACTORS

Technical Library | 2020-07-02 01:14:44.0

Head-in-Pillow (HIP) defects are a growing concern in the electronics industry. These defects are usually believed to be the result of several factors, individually or in combination. Some of the major contributing factors include: surface quality of the BGA spheres, activity of the paste flux, improper placement / misalignment of the components, a non-optimal reflow profile, and warpage of the components. To understand the role of each of these factors in producing head-in-pillow defects and to find ways to mitigate them, we have developed two in-house tests.

Cookson Electronics

Optimising Solder Paste Volume for Low Temperature Reflow of BGA Packages

Technical Library | 2020-09-23 21:37:25.0

The need to minimise thermal damage to components and laminates, to reduce warpage-induced defects to BGA packages, and to save energy, is driving the electronics industry towards lower process temperatures. For soldering processes the only way that temperatures can be substantially reduced is by using solders with lower melting points. Because of constraints of toxicity, cost and performance, the number of alloys that can be used for electronics assembly is limited and the best prospects appear to be those based around the eutectic in the Bi-Sn system, which has a melting point of about 139°C. Experience so far indicates that such Bi-Sn alloys do not have the mechanical properties and microstructural stability necessary to deliver the reliability required for the mounting of BGA packages. Options for improving mechanical properties with alloying additions that do not also push the process temperature back over 200°C are limited. An alternative approach that maintains a low process temperature is to form a hybrid joint with a conventional solder ball reflowed with a Bi-Sn alloy paste. During reflow there is mixing of the ball and paste alloys but it has been found that to achieve the best reliability a proportion of the ball alloy has to be retained in the joint, particular in the part of the joint that is subjected to maximum shear stress in service, which is usually the area near the component side. The challenge is then to find a reproducible method for controlling the fraction of the joint thickness that remains as the original solder ball alloy. Empirical evidence indicates that for a particular combination of ball and paste alloys and reflow temperature the extent to which the ball alloy is consumed by mixing with the paste alloy is dependent on the volume of paste deposited on the pad. If this promising method of achieving lower process temperatures is to be implemented in mass production without compromising reliability it would be necessary to have a method of ensuring the optimum proportion of ball alloy left in the joint after reflow can be consistently maintained. In this paper the author explains how the volume of low melting point alloy paste that delivers the optimum proportion of retained ball alloy for a particular reflow temperature can be determined by reference to the phase diagrams of the ball and paste alloys. The example presented is based on the equilibrium phase diagram of the binary Bi-Sn system but the method could be applied to any combination of ball and paste alloys for which at least a partial phase diagram is available or could be easily determined.

Nihon Superior Co. Ltd

Optimizing Flip Chip Substrate Layout for Assembly

Technical Library | 2007-11-29 17:20:31.0

Programs have been developed to predict the expected yield of flip chip assemblies, based on substrate design and the statistics of actual manufactured boards, as well as placement machine accuracy, variations in bump sizes, and possible substrate warpage. These predictions and the trends they reveal can be used to direct changes in design so that defect levels will fall below the acceptable limits. Shapes of joints are calculated analytically, or when this is not possible, numerically by means of a public domain program called Surface Evolver. The method is illustrated with an example involving the substrate for a flip chip BGA.

Universal Instruments Corporation

A Novel Epoxy Flux On Solder Paste For Assembling Thermally Warped POP

Technical Library | 2017-08-17 12:23:27.0

A novel epoxy flux EF-A was developed with good compatibility with no-clean solder pastes, and imparts high reliability for BGA assembly at a low cost. This compatibility with solder pastes is achieved by a well-engineered miscibility between epoxy and no-clean solder paste flux systems, and is further assured with the introduction of a venting channel. The compatibility enables a single bonding step for BGAs or CSPs, which exhibit high thermal warpage, to form a high-reliability assembly. Requirements in drop test, thermal cycling test (TCT), and SIR are all met by this epoxy flux, EF-A. The high viscosity stability at ambient temperature is another critical element in building a robust and userfriendly epoxy flux system. EF-A can be deposited with dipping, dispensing, and jetting. Its 75°C Tg facilitates good reworkability and minimizes the adverse impact of unfilled underfill material on TCT of BGA assemblies.

Indium Corporation

Addressing the Challenge of Head-In-Pillow Defects in Electronics Assembly

Technical Library | 2013-12-27 10:39:21.0

The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.

Indium Corporation

  1  

bga warpage searches for Companies, Equipment, Machines, Suppliers & Information

Selective soldering solutions with Jade soldering machine

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Selective soldering solutions with Jade soldering machine

Benchtop Fluid Dispenser
Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

Best Reflow Oven
PCB separator

Find a wide selection of nozzles, solder materials, storage solutions and more at SALESCON