Technical Library: circuit and industries and co.

A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry

Technical Library | 2022-06-27 16:50:26.0

Electronics industry is one of the fastest evolving, innovative, and most competitive industries. In order to meet the high consumption demands on electronics components, quality standards of the products must be well-maintained. Automatic optical inspection (AOI) is one of the non-destructive techniques used in quality inspection of various products. This technique is considered robust and can replace human inspectors who are subjected to dull and fatigue in performing inspection tasks. A fully automated optical inspection system consists of hardware and software setups. Hardware setup include image sensor and illumination settings and is responsible to acquire the digital image, while the software part implements an inspection algorithm to extract the features of the acquired images and classify them into defected and non-defected based on the user requirements. A sorting mechanism can be used to separate the defective products from the good ones. This article provides a comprehensive review of the various AOI systems used in electronics, micro-electronics, and opto-electronics industries. In this review the defects of the commonly inspected electronic components, such as semiconductor wafers, flat panel displays, printed circuit boards and light emitting diodes, are first explained. Hardware setups used in acquiring images are then discussed in terms of the camera and lighting source selection and configuration. The inspection algorithms used for detecting the defects in the electronic components are discussed in terms of the preprocessing, feature extraction and classification tools used for this purpose. Recent articles that used deep learning algorithms are also reviewed. The article concludes by highlighting the current trends and possible future research directions.

Institute of Electrical and Electronics Engineers (IEEE)

What Are Gerber Files for Printed Circuit Boards, and Who Needs Them?

Technical Library | 2007-03-13 14:26:33.0

This article tells what a gerber file is and what it is used for in the electronic manufacturing industry.

Innovative Circuits Inc.

A Review of Corrosion and Environmental Effects on Electronics

Technical Library | 2013-08-01 13:17:44.0

Electronic industry uses a number of metallic materials in various forms. Also new materials and technology are introduced all the time for increased performance. In recent years, corrosion of electronic systems has been a significant issue. Multiplicity of materials used is one reason limiting the corrosion reliability. However, the reduced spacing between components on a printed circuit board (PCB) due to miniaturization of device is another factor that has made easy for interaction of components in corrosive environments. Presently the knowledge on corrosion issues of electronics is very limited. This paper reviews briefly the materials used in electronic systems, factors influencing corrosion, types of corrosion observed in electronics, and testing methods.

Technical University of Denmark

Jetting Strategies for mBGAs a question of give and take...

Technical Library | 2015-04-02 20:12:58.0

The demands on volume delivery and positioning accuracy for solder paste deposits are increasing as the size and complexity of circuits continue to develop in the electronics industry. According to the iNEMI 2013 placement accuracy for these kinds of components will reach 6 sigma placement accuracy in X and Y of 30 um by 2023.This study attempts to understand the dependencies on piezo actuation pulse profile on jetting deposit quality, especially focused on positioning, satellites and shape. The correlation of deposit diameter and positioning deviation as a function of piezo actuation profile shows that positioning error for deposits increase almost monotonically with decreasing droplet volume irrespective of the piezo-actuation profile. The trends for shape and satellite levels are not as clear and demand further study.

Mycronic Technologies AB

Creep Corrosion of PWB Final Finishes: Its Cause and Prevention

Technical Library | 2021-04-08 00:30:49.0

As the electronic industry moves to lead-free assembly and finer-pitch circuits, widely used printed wiring board (PWB) finish, SnPb HASL, has been replaced with lead-free and coplanar PWB finishes such as OSP, ImAg, ENIG, and ImSn. While SnPb HASL offers excellent corrosion protection of the underlying copper due to its thick coating and inherent corrosion resistance, the lead-free board finishes provide reduced corrosion protection to the underlying copper due to their very thin coating. For ImAg, the coating material itself can also corrode in more aggressive environments. This is an issue for products deployed in environments with high levels of sulfur containing pollutants encountered in the current global market. In those corrosive environments, creep corrosion has been observed and led to product failures in very short service life (1-5 years). Creep corrosion failures within one year of product deployment have also been reported. This has prompted an industry-wide effort to understand creep corrosion

Alcatel-Lucent

Advances in Conductive Inks across Multiple Applications and Deposition Platforms

Technical Library | 2012-12-27 14:35:29.0

Printed Electronics is generally defined as the patterning of electronic materials, in solution form, onto flexible substrates, omitting any use of the photolithography, etching, and plating steps commonly found within the Printed Circuit Board (PCB) industry. The origins of printed electronics go back to the 1960s, and close variants of several original applications and market segments remain active today. Through the 1980s and 1990s Printed Electronic applications based on Membrane Touch Switch and Electroluminescent lighting technologies became common, and the screen printed electronic materials used then have formed the building blocks for many of the current and emerging technologies and applications... First published in the 2012 IPC APEX EXPO technical conference proceedings.

DuPont

Screen Making for Printed Electronics- Specification and Tolerancing

Technical Library | 2018-03-28 14:54:36.0

Six decades of legacy experience makes the specification and production of screens and masks to produce repeatable precision results mostly an exercise in matching engineering needs with known ink and substrate performance to specify screen and stencil characteristics. New types of functional and electronic devices, flex circuits and medical sensors, industrial printing, ever finer circuit pitch, downstream additive manufacturing processes coupled with new substrates and inks that are not optimized for the rheological, mechanical and chemical characteristics for the screen printing process are becoming a customer driven norm. Many of these materials do not work within legacy screen making, curing or press set-up parameters. Many new materials and end uses require new screen specifications.This case study presents a DOE based method to pre-test new materials to categorize ink and substrate rheology, compatibility and printed feature requirement to allow more accurate screen recipes and on-press setting expectations before the project enters the production environment where time and materials are most costly and on-press adjustment methods may be constrained by locked, documented or regulatory processes, equipment limitations and employee experience.

Hazardous Print Consulting Inc

Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics

Technical Library | 2021-05-13 16:03:25.0

Sn-based lead-free solders such as Sn-Ag-Cu, Sn-Cu, and Sn-Bi have been used extensively for a long time in the electronic packaging field. Recently, low-temperature Sn-Bi solder alloys attract much attention from industries for flexible printed circuit board (FPCB) applications. Low melting temperatures of Sn-Bi solders avoid warpage wherein printed circuit board and electronic parts deform or deviate from the initial state due to their thermal mismatch during soldering. However, the addition of alloying elements and nanoparticles Sn-Bi solders improves the melting temperature, wettability, microstructure, and mechanical properties. Improving the brittleness of the eutecticSn-58wt%Bi solder alloy by grain refinement of the Bi-phase becomes a hot topic. In this paper, literature studies about melting temperature, microstructure, inter-metallic thickness, and mechanical properties of Sn-Bi solder alloys upon alloying and nanoparticle addition are reviewed

University of Seoul

DOE for Process Validation Involving Numerous Assembly Materials and Test Methods.

Technical Library | 2010-03-18 14:02:03.0

Selecting products that have been qualified by industry standards for use in printed circuit board assembly processes is an accepted best practice. That products which have been qualified, when used in combinations not specifically qualified, may have resultant properties detrimental to assembly function though, is often not adequately understood. Printed circuit boards, solder masks, soldering materials (flux, paste, cored wire, rework flux, paste flux, etc.), adhesives, and inks, when qualified per industry standards, are qualified using very specific test methods which may not adequately mimic the assembly process ultimately used.

Trace Laboratories

Printed Circuit Board (PCB) Technology for Electrochemical Sensors and Sensing Platforms

Technical Library | 2021-02-17 22:13:39.0

The development of various biosensors has revolutionized the healthcare industry by providing rapid and reliable detection capability. Printed circuit board (PCB) technology has a well-established industry widely available around the world. In addition to electronics, this technology has been utilized to fabricate electrical parts, including electrodes for different biological and chemical sensors. High reproducibility achieved through long-lasting standard processes and low-cost resulting from an abundance of competitive manufacturing services makes this fabrication method a prime candidate for patterning electrodes and electrical parts of biosensors. The adoption of this approach in the fabrication of sensing platforms facilitates the integration of electronics and microfluidics with biosensors. In this review paper, the underlying principles and advances of printed board circuit technology are discussed. In addition, an overview of recent advancements in the development of PCB-based biosensors is provided. Finally, the challenges and outlook of PCB-based sensors are elaborated. doi:10.3390/bios10110159

Louisiana State University

  1 2 3 Next

circuit and industries and co.,ltd. searches for Companies, Equipment, Machines, Suppliers & Information

Heller Industries Inc.
Heller Industries Inc.

Reflow ovens for automated SMT PCB assembly, specializing in lead free processing and nitrogen reflow. The best convection reflow ovens on the market.

Manufacturer

4 Vreeland Rd.
Florham Park, NJ United Arab Emirates

Phone: 973-377-6800

2023 Eptac IPC Certification Training Schedule

Software for SMT placement & AOI - Free Download.
used smt parts china

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
PCB Handling Machine with CE

MSD Dry Cabinets
Hot selling SMT spare parts and professional SMT machine solutions

SMT Machines, Parts & Accessories - Used and New