Technical Library: cleaning and pcb and melting (Page 1 of 1)

The Conditions and Solutions of Lead-free Hand Soldering

Technical Library | 2013-01-05 22:21:01.0

More and more countries legislate to forbib lead usage in solder material. However, the lead-free solder wire has higher melting point and soldering temperature, increase soldering iron temperature may damage the PCB or components. How to solve this problem?

Leisto Industrial Co., Limited

Latent heat induced deformation of PCB substrate: Measurement and simulation

Technical Library | 2022-12-05 16:28:06.0

The work evaluates the impact of latent heat (LH) absorbed or released by a solder alloy during melting or solidification, respectively, on changes of dimensions of materials surrounding of the solder alloy. Our sample comprises a small printed circuit board (PCB) with a blind via filled with lead-free alloy SAC305. Differential scanning calorimetry (DSC) was employed to obtain the amount of LH per mass and a thermomechanical analyzer was used to measure the thermally induced deformation. A plateau during melting and a peak during solidification were detected during the course of dimension change. The peak height reached 1.6 μm in the place of the heat source and 0.3 μm in the distance of 3 mm from the source. The data measured during solidification was compared to a numerical model based on the finite element method. An excellent quantitative agreement was observed which confirms that the transient expansion of PCB during cooling can be explained by the release of LH from the solder alloy during solidification. Our results have important implications for the design of PCB assemblies where the contribution of recalescence to thermal stress can lead to solder joint failure.

Czech Technical University in Prague

No-Clean Flux Residue and Underfill Compatibility Effects on Electrical Reliability

Technical Library | 2013-04-11 15:43:17.0

With the explosion of growth in handheld electronics devices, manufacturers have been forced to look for ways to reinforce their assemblies against the inevitable bumps and drops that their products experience in the field. One method of reinforcement has been the utilization of underfills to "glue" certain SMDs to the PCB. Bumped SMDs attached to the PCB with a no-clean soldering process offer the unavoidable scenario of the underfill coming in contact with a flux residue. This may or may not create a reliability issue... First published in the 2012 IPC APEX EXPO technical conference proceedings

Indium Corporation

Characterize and Understand Functional Performance Of Cleaning QFN Packages on PCB Assemblies

Technical Library | 2022-12-19 18:59:51.0

Material and Process Characterization studies can be used to quantify the harmful effects that might arise from solder flux and other process residues left on external surfaces after soldering. Residues present on an electronic assembly can cause unwanted electrochemical reactions leading to intermittent performance and total failure. Components with terminations that extend underneath the package can trap flux residue. These bottom terminated components are flush with the bottom of the device and can have small solderable terminations located along the perimeter sides of the package. The clearance between power and ground render high electrical forces, which can propagate electrochemical interactions when exposed to atmospheric moisture (harsh environments). The purpose of this research is to predict and understand the functional performance of residues present under single row QFN component packages. The objective of the research study is to develop and collect a set of guidelines for understanding the relationship between ionic contamination and electrical performance of a BTC component when exposed to atmospheric moisture and the trade-offs between electrical, ionic contamination levels, and cleanliness. Utilizing the knowledge gained from undertaking the testing of QFN components and associated DOE, the team will establish a reference Test Suite and Test Spec for cleanliness.

iNEMI (International Electronics Manufacturing Initiative)

Approaches to Overcome Nodules and Scratches on Wire Bondable Plating on PCBs

Technical Library | 2020-08-27 01:22:45.0

Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads. The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable. Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.

Teledyne DALSA

  1  

cleaning and pcb and melting searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.

Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830

Voidless Reflow Soldering

High Resolution Fast Speed Industrial Cameras.
Pillarhouse USA for Selective Soldering Needs

High Precision Fluid Dispensers
Pillarhouse USA for handload Selective Soldering Needs

High Throughput Reflow Oven
Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications


"回流焊炉"