Technical Library: embedded capacitors (Page 1 of 4)

Stencil Printing 008004/0201 Aperture Components

Technical Library | 2020-04-14 15:56:32.0

This paper will focus on the application requirements of solder printing small aperture designs, concentrating on 008004 (inch) / 0201 (metric) size components, and the results of a design of experiment printing these challenging apertures. As Moore's law continues to be applied to component miniaturization, the next installment of reduced packaging has arrived in the form of the 008004/0201 for resistors and capacitors. Component size roughly the size of a grain of sand presents specific challenges to the solder printing process. To address these challenges, each aspect of the printing process will need be examined. This includes essential machine requirements, including correct squeegee blades, tooling support, and calibrations, to meet the demanding specifications. The correct match and design of materials will be addressed, focusing on the stencil and substrate design along with solder paste and cleaning solvent requirements. A design of experiment will be reviewed that applies the machine and materials discussed, including the printer and Solder Paste Inspection (SPI) setup and the specific machine parameters used. The results of these DOE's will then be closely examined.


Ceramic to Plastic Packaging

Technical Library | 2019-06-05 11:11:06.0

As electronic products increase in functionality and complexity, there is an emphasis on affordability, miniaturization, and energy efficiency. The telecommunications, automotive, and commercial electronic markets are the leading drivers for these trends. These markets see high volume manufacturing with millions of units priced to the fraction of the cent. The choice of the packaging material for the electrical components for these markets can have a substantial effect on the cost of the final product. Therefore plastic encapsulated components are almost universally used in non-military applications over the conventional ceramic or metal electronic packages.

ACI Technologies, Inc.

Manufacturing Cost Reduction through Automation

Technical Library | 2019-06-24 15:54:17.0

Defense systems and its manufacturers are often blamed for not embracing new and innovative technologies to manufacture products compared to its commercial counterparts. Commercial product manufacturers are known to think “outside the box” in coming up with new products which are cheaper, have fewer parts, and easier to manufacture using automation. Automation leads to consistent quality products which are reliable and reproducible. Implementing some of these producibility design practices into defense systems will greatly reduce the cost and insertion time for new products.

ACI Technologies, Inc.

Laser Micromachining of Nanocomposite-Based Flexible Embedded Capacitors

Technical Library | 2007-11-21 11:39:13.0

This paper discusses laser micromachining of barium titanate (BaTiO3)-polymer nanocomposites and sol-gel thin films. In particular, recent developments on high capacitance, large area, and thin flexible embedded capacitors are highlighted.

i3 Electronics

Reliability of Embedded Planar Capacitors under Temperature and Voltage Stress

Technical Library | 2015-05-21 18:46:31.0

In this work the reliability of an embedded planar capacitor laminate under temperature and voltage stress is investigated. The capacitor laminate consisted of an epoxy-BaTiO3 composite sandwiched between two layers of copper. The test vehicle with the embedded capacitors was subjected to a temperature of 125oC and a voltage bias of 200 V for 1000 hours. Capacitance, dissipation factor, and insulation resistance were monitored in-situ. Failed capacitors exhibited a sharp drop in insulation resistance, indicating avalanche breakdown. The decrease in the capacitance after 1000 hours was no more than 8% for any of the devices monitored. The decrease in the capacitance was attributed to delamination in the embedded capacitor laminate and an increase in the spacing between the copper layers.

CALCE Center for Advanced Life Cycle Engineering

Embedded Passive Technology

Technical Library | 2014-01-09 16:40:33.0

Embedded Passive Technology is a viable technology that has been reliably used in the defense and aerospace industry for over 20 years. Embedded Passive (Resistors and Capacitors) Technology have a great potential for high frequency and high density applications. It also provides better signal performance, reduced parasitic and cross talk. This paper summarizes the selection of resistor embedded materials, evaluations of resistive material (Phase 1) and duplication of a complex digital design (Phase 2). Phase 1 –resistive materials (Foil 25Ω/sq NiCr and 1kΩ/sq CrSiO) and resistive-Ply materials (25Ω/sq and 250Ω/sq NiP) were chosen for evaluation.

Honeywell International

Resin Coated Copper Capacitive (RC3) Nanocomposites for System in a Package (SiP): Development of 3-8-3 structure

Technical Library | 2009-10-08 01:58:04.0

In the present study, we report novel ferroelectric-epoxy based polymer nanocomposites that have the potential to surpass conventional composites to produce thin film capacitors over large surface areas, having high capacitance density and low loss. Specifically, novel crack resistant and easy to handle Resin Coated Copper Capacitive (RC3) nanocomposites capable of providing bulk decoupling capacitance for a conventional power-power core, or for a three layer Voltage-Ground-Voltage type power core, is described.

i3 Electronics

Multilayer Ceramic Capacitors: Mitigating Rising Failure Rates

Technical Library | 2018-12-05 14:52:23.0

The multilayer ceramic capacitor (MLCC) has become a widely used electronics component both for surface mount and embedded PCB applications. The MLCC technologies have gone through a number of material and process changes such as the shift from precious metal electrode (PME) configurations which were predominantly silver/palladium to base metal electrodes (BME) dominated by nickel. Each of these changes were accompanied by both quality and reliability problems. The MLCC industry is now in the midst of an unprecedented set of challenges similar to the Moore’s Law challenges being faced by the semiconductor industry. While capacitor failures have historically been responsible for a significant percentage of product field failures (most estimates are ~30%) we are seeing disturbing developments in the low voltage (

DfR Solutions

A Comparison of Mulpin VS Embedded Passive Technology

Technical Library | 2016-12-15 17:18:28.0

Why embed the components? Embedded components have advantages over SMD because they are naturally screened from high frequency radio emissions (RFI or EMI). They can also be smaller than current SMD components. Both embedded and Mulpin components have these advantages, but Mulpin components have many more advantages and none of the disadvantages which can be seen below.

Mulpin Research Laboratories

Thick Film Polymer Resistors Embedded in Printed Circuit Boards

Technical Library | 2010-04-15 20:42:44.0

The high level of current interest in embedded passives in printed circuit boards is driven by the tremendous pressure to pack more circuitry into smaller spaces. However, adoption has been limited due to design, prototyping and infrastructure issues, as well as the stability and tolerances necessary for widespread replacement of discretes. The focus of this work has been to develop a polymer thick film resistor technology to incorporate reliable organic resistors inside printed wiring boards using standard PWB processing.


  1 2 3 4 Next

embedded capacitors searches for Companies, Equipment, Machines, Suppliers & Information