Technical Library: h11 (Page 1 of 1)

All-in-One, Wireless, Stretchable Hybrid Electronics for Smart, Connected, and Ambulatory Physiological Monitoring

Technical Library | 2020-08-19 19:13:00.0

Commercially available health monitors rely on rigid electronic housing coupled with aggressive adhesives and conductive gels, causing discomfort and inducing skin damage. Also, research-level skin-wearable devices, while excelling in some aspects, fall short as concept-only presentations due to the fundamental challenges of active wireless communication and integration as a single device platform. Here, an all-in-one, wireless, stretchable hybrid electronics with key capabilities for real-time physiological monitoring, automatic detection of signal abnormality via deep-learning, and a long-range wireless connectivity (up to 15 m) is introduced. The strategic integration of thin-film electronic layers with hyperelastic elastomers allows the overall device to adhere and deform naturally with the human body while maintaining the functionalities of the on-board electronics. The stretchable electrodes with optimized structures for intimate skin contact are capable of generating clinical-grade electrocardiograms and accurate analysis of heart and respiratory rates while the motion sensor assesses physical activities. Implementation of convolutional neural networks for real-time physiological classifications demonstrates the feasibility of multifaceted analysis with a high clinical relevance. Finally, in vivo demonstrations with animals and human subjects in various scenarios reveal the versatility of the device as both a health monitor and a viable research tool.

Georgia Institute of Technology

An Investigation Into The Durability Of Stencil Coating Technologies

Technical Library | 2019-03-13 15:19:55.0

It is well documented that Nano coatings on SMT stencils offer many benefits to those assembling PWBs. With reduced standard deviation and improved transfer efficiency nano coatings can provide, there is also a cost. As PWB assemblers work to justify the return on investment, one key question continues to arise. What is the durability or life of these coatings and what can be done in the print process to maximize the life of the coatings?This paper addresses durability of the coatings in relation to the number of print cycles and underside wipe cycles applied as well as materials used on the underside wipe process. Different parameters will be applied and data will be collected. The results of this study will be summarized to help those using or considering the use of these nano coatings to improve their print process and suggestions will be given to maximize the life of the coatings.

FCT ASSEMBLY, INC.

  1  

h11 searches for Companies, Equipment, Machines, Suppliers & Information