Technical Library: internal (Page 1 of 6)

Are You Ready for Lead Free

Technical Library | 2023-01-17 17:37:45.0

Various international market trends drive electronics manufacturers and their mate- rials and equipment suppliers to develop new assembly techniques to reduce the industry's environmental impact. Two pri- mary forces in this drive are the movements to lead-free assembly and ISO 14000 cer- tification. In response to these factors, reflow technology advances are enabling manufacturers to meet or anticipate the new environmental mandates.

Heller Industries Inc.

Fiber Optic Cabling

Technical Library | 2019-11-13 13:53:50.0

Fiber optic harnesses appear simple, but they have been designed to maintain all of the critical areas of aligning two fibers and minimize the losses associated with a break in the transmission path. In order to understand how the connectors overcome alignment issues, we must first understand the issues. Fiber optic communications networks use specific wavelengths of light (or colors) to transmit information through a clear fiber at high speed. They use the property of internal reflection along the fiber’s axis to contain the light and keep the optical power high enough to be detected at the receiving end.

ACI Technologies, Inc.

Utility of Dual Applicators for Non-Atomized Conformal Coating to Improve High-Volume Manufacturing Optimization

Technical Library | 2017-12-07 10:35:50.0

Electronics manufacturers protect their circuit boards with conformal coatings. Conformal coatings serve as a barrier from environmental hazards and internal shorts, tin whiskers, and corrosion at the board level. Within conformal coatings different material chemistries specialize in shielding from an array of hazards and can be applied by multiple methods. The most common method is atomized spray which disperses the material into a fine mist. Alternatively, non-atomized coating controls the materials' dispense shape while maintaining the original liquid form. While some applications demand atomized spray and other scenarios overlap between atomized and non-atomized coating, this paper focuses on the circumstances where materials are ideally suited for non-atomized, selective coating.

ASYMTEK Products | Nordson Electronics Solutions

Decapsulation of Integrated Circuits

Technical Library | 2019-05-24 09:27:33.0

Decapsulation, or de-cap, is a failure analysis technique which involves the removal of material packaging from an integrated circuit (IC). After de-cap, visual inspection by optical microscopy of the internal circuitry may reveal areas where damage is most likely to have occurred. In addition, scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) can identify the composition of any anomalies present after de-cap under higher magnification. The removal process of package material can be done either mechanically or chemically depending on the design of the integrated circuit. With ceramic packaging, de-cap is usually done mechanically by chiseling off the top with a fine razor and small hammer. For plastic packaging, de-cap requires chemical etching by strong acids. In this Tech Tips article, de-cap by chemical etching will be outlined step by step.

ACI Technologies, Inc.

Decapsulation of Integrated Circuits

Technical Library | 2019-05-29 10:38:59.0

Decapsulation, or de-cap, is a failure analysis technique which involves the removal of material packaging from an integrated circuit (IC). After de-cap, visual inspection by optical microscopy of the internal circuitry may reveal areas where damage is most likely to have occurred. In addition, scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) can identify the composition of any anomalies present after de-cap under higher magnification. The removal process of package material can be done either mechanically or chemically depending on the design of the integrated circuit. With ceramic packaging, de-cap is usually done mechanically by chiseling off the top with a fine razor and small hammer. For plastic packaging, de-cap requires chemical etching by strong acids. In this Tech Tips article, de-cap by chemical etching will be outlined step by step.

ACI Technologies, Inc.

Surface Finish Issues Affecting Solderability and Reliability

Technical Library | 2019-06-07 14:49:54.0

ACI Technologies was contacted in regards to poor solder joint reliability. The customer submitted an assembly that was exhibiting intermittent opens at multiple locations on a ball grid array (BGA) component. The assembly’s functionality did not survive international shipping, essentially shock and vibration failures, immediately making the quality of the solder joints suspect. The customer was asked about the contract manufacturer and the reflow oven profile as well as the solder paste and surface finish used. The ACI engineering staff evaluated the contract manufacturer’s technique and determined that they were competent in the methods they used for placing thermocouples in the proper locations and developing the reflow oven profile. The surface finish was unusual, but not unheard of, in that it was hard gold over hard nickel, rather than electroless nickel immersion gold (ENIG). The customer was able to supply boundary scan testing data which showed a diagonal row of troublesome BGA pins.

ACI Technologies, Inc.

Ball Grid Array (BGA) Voiding Affecting Functionality

Technical Library | 2020-11-09 16:59:53.0

A customer contacted ACI Technologies regarding a high failure rate of their assemblies. They provided assemblies to be X-rayed and inspected for the purpose of identifying any process related issues such as (but not limited to) solder and assembly workmanship and evidence of damage due to moisture related problems during reflow (a.k.a. "popcorning"). Moisture damage usually appears as physical damage to the component. The first indication of moisture damage would be externally observable changes to the package in the form of bulging or fractures to the outer surface of the component, an example of which is shown in Figure 1. Internally observable indicators of moisture damage typically include fractures to the die inside the package and lifted or fractured wire bonds. These conditions would be apparent during transmissive X-ray inspection. Another symptom of moisture related damage would be inconsistent solder joint sizes that result from package deformation during the liquidus phase of the reflow process. None of these indicators of moisture related damage were present on the customer samples.

ACI Technologies, Inc.

Revolutionize PCB Manufacturing with SMT Dispensing Machines

Technical Library | 2023-12-18 11:33:57.0

Elevate your electronic manufacturing game with the I.C.T-D600 SMT Dispensing Machine! Precision, safety, and efficiency in one powerful solution. ​In the dynamic realm of electronic manufacturing, precision and efficiency are not just preferences but essential requirements. Introducing the I.C.T-D600, an automatic glue dispenser machine engineered to enhance production processes across various applications. From chip encapsulation to PCB assembly, SMT red-glue dispensing, LED lens production, and medical device creation, SMT dispensing machine is a versatile solution tailored to meet the demands of the industry. Essential Attributes Of The I.C.T-D600 Automatic Glue Dispenser Machine 1. Compliance with European Safety Standards: The I.C.T-D600 SMT dispensing machine prioritizes not only efficiency but also safety, boasting compliance with European safety standards and holding a CE certificate. This ensures a secure and reliable manufacturing environment, aligning with global quality benchmarks. 2. International Component Quality: Internationally renowned components form the core of the D600 SMT dispensing machine. From Panasonic servomotors to MINTRON CCD, each element is carefully selected, guaranteeing high performance and durability. This commitment to quality components results in a machine that operates seamlessly, reducing downtime and maintenance costs. 3. Impressive Performance Metrics: The SMT dispensing machinedoesn't just meet expectations; it surpasses them with exceptional performance metrics: Maximum Guide Rail Speed: 400mm/s Fastest Injection Valve Speed: 20 spots/sec Dispensing Accuracy: ±0.02mm Repeated Accuracy: ±0.01mm Machine Characteristics: Core Part – Jet Valve The non-contact jet dispensing method ensures high-speed operation (max jet speed: 20 spots/second), high accuracy with a minimum dispensing volume of 5nl, and flexibility with extremely small dispensing volumes. The thermostatic system for the flow channel and sprayer ensures uniform glue temperature, resulting in low maintenance costs and an extended service life. Enhanced Capacity: Non-contact jet dispensing eliminates the need for Z-axis motion. Integrated temperature control technology reduces manual intervention. Automatic glue compensation minimizes artificial regulation time. Dual-track design reduces waiting time. Automatic visual location identification and compensation. Non-contact height detection with laser reduces height detection time. Flexibility: Capable of handling substrates or backings of various sizes. Optional heating module. Independent control of dual tracks with user-friendly software. Fast switching between different product lines. Universal platform suitable for various processes with different glues

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Micro-Sectioning of PCBs for Failure Analysis

Technical Library | 2010-01-13 12:34:10.0

Micro-sectioning (sometimes referred to as cross-sectioning)is a technique, used to characterize materials or to perform a failure mode analysis, for exposing an internal section of a PCB or package. Destructive in nature, cross-sectioning requires encapsulation of the specimen in order to provide support, stability, and protection. Failures that can be investigated through micro-sectional analysis include component defects, thermo-mechanical failures, processing failures related to solder reflow, opens or shorts, voiding and raw material evaluations.

BEST Inc.

Applying Microscopic Analytic Techniques For Failure Analysis In Electronic Assemblies

Technical Library | 2021-09-21 20:36:45.0

The present paper gives an overview of surface failures, internal nonconformities and solders joint failures detected by microscopic analysis of electronic assemblies. Optical microscopy (stereomicroscopy) and Fourier-Transform- Infrared (FTIR) microscopy is used for documentation and failure localization on electronic samples surface. For internal observable conditions a metallographic cross-section analysis of the sample is required. The aim of this work is to present some internal and external observable nonconformities which frequently appear in electronic assemblies. In order to detect these nonconformities, optical microscopy, cross section analysis, FTIR-microscopy and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) were used as analytical techniques.

ZOLLNER ELECTRONICS, INC.

  1 2 3 4 5 6 Next

internal searches for Companies, Equipment, Machines, Suppliers & Information

Selective soldering solutions with Jade soldering machine

High Precision Fluid Dispensers
Selective Soldering Nozzles

High Throughput Reflow Oven
Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

World's Best Reflow Oven Customizable for Unique Applications
SMT spare parts

500+ original new CF081CR CN081CR FEEDER in stock