Technical Library: ion (Page 1 of 2)

Identifying Flux Residues

Technical Library | 2019-05-23 10:42:00.0

Why identify flux residues? The primary purpose of flux is to reduce species of metal oxides from solderable surfaces, and to act as a mechanism for lifting and removing debris. If the assembly is not properly cleaned after manufacturing, flux may continue to reduce metals and may eventually corrode the assembly. When the assembly is powered, the metal ions may precipitate along electromagnetic field lines and form dendritic shorts. In addition, the presence of residue can alter the insulation properties of a board, affect the adhesion of the conformal coating, or interfere with the moving parts of the assembly. In radio frequency (RF) applications, flux may change the RF properties on the surface of the printed circuit board (PCB) such as the dielectric strength, surface resistance, and Q-resonance.

ACI Technologies, Inc.

Non-Destructive Test Methods

Technical Library | 2019-09-23 09:35:00.0

Failure analysis (FA), by its very nature, is needed only when things goawry. Before any testing is performed on the sample, a decision mustbe made as to whether or not the sample is allowed to be destroyedin the process of testing. Non-destructive testing can allow for re-use of the assembly since the functionality is not altered, but there still remains the possibility that inadvertent damage can occur through the course of the analysis. If non-destructive testing is preferred, then the following types of analysis can be performed. The testing can be divided into four categories: visual, X-ray (X-ray imaging and X-ray fluorescence), cleanliness (resistivity of solvent extract, ion chromatography, and Fourier transform infrared spectroscopy), and mechanical (non-destructive wire bond pull).

ACI Technologies, Inc.

Cleanliness/Corrosion Mitigation

Technical Library | 2019-09-27 09:14:41.0

One of the most critical factors in preventing corrosion from occurring in electronics is maintaining the state of cleanliness. This is not an easy feat to achieve. Corrosion is defined as the deterioration of a material or its properties due to a reaction of that material with its chemical environment. [1] So, to prevent corrosion from occurring, either the material or the chemical environment must be adjusted. Adjusting the material usually means application of a protective coating or replacing a more reactive material with a less reactive material. Adjusting the chemical environment usually means removing ionic species through cleaning, and removing moisture, usually with a conformal coating or hermetic package. Ionic species and moisture are problematic because they form an electrolyte which is able to conduct ions and electricity. Any metal that comes into contact with the electrolyte can begin to corrode.

ACI Technologies, Inc.

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines

Technical Library | 2023-11-20 09:56:38.0

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines Precision is paramount in PCB manufacturing, but it must go hand in hand with cleanliness. The intrusion of dust and debris can wreak havoc on delicate electronics. This article explores the pivotal role of dust collectors, their operation, and their necessity for various PCB depaneling machines. The Dust Collector's Crucial Function Dust collectors, also known as dust extractors, play an indispensable role in PCB manufacturing. When a PCB depaneling machine or a Laser PCB Depaneling machine is in operation, it generates a significant amount of dust. The dust collector promptly engages its vacuum motor to suction fine particles off the PCB, directing them to a collector equipped with a filtration system. Which Models Of PCB Depanelers Require Dust Collector? Several PCB depaneling machines necessitate dust collectors to ensure precision and cleanliness, including: I.C.T-5700 Offline Depaneling Machine, high precision, easy manual operation, dual platform, high efficiency. I.C.T-IR350 In-line depaneling machine, high precision, rapid operation, suitable for integration into the SMT production line for Industry 4.0 and AI automated production. I.C.T-LCO350 Laser cutting ensures cutting accuracy of 0.002, ideal for precise cutting requirements. I.C.T-100A Desktop PCB depaneling machine with compact size and high precision, suitable for smaller-scale operations. The Science Behind PCB Dust Collectors To prevent charged dust particles from adhering to PCBs, PCB depaneling machines are equipped with ionizing guns. These devices emit ions that neutralize static charges, making dust particles less likely to stick to freshly cut PCBs. The Vacuum Effect: Suctioning Away Dust During PCB depaneling, a cloud of dust is produced. The dust collector utilizes a robust suction system, often powered by vacuum motors, to draw dust away from the work area. Collected dust is transported to a designated collection point within the dust collector. A Difference In Design: I.C.T-5700 Vs. I.C.T-IR350 The placement of the dust collection apparatus distinguishes PCB depaneling machines. I.C.T-5700 has a bottom-mounted system capturing falling dust, while I.C.T-IR350 features a top-mounted system preventing dust settling on the work surface. This strategic difference ensures efficient removal of dust and debris, guaranteeing a clean and precise manufacturing process. Check: If you want to learn about the comparison of I.C.T-5700 and I.C.T-IR350. The Importance Of Filter Replacement The efficiency of a dust collector relies on its filter, necessitating periodic replacement every 1-3 years, depending on usage frequency. Regular filter maintenance ensures optimal performance. Dust Collectors: Keep Your PCB Manufacturing Clean And Precise Precision in PCB manufacturing is not solely about cutting-edge machinery but also about cleanliness. If you seek a dust collector for your PCB depaneling machine, contact us today to explore your options. Ensure your operations maintain cleanliness, efficiency, and meet the high standards of modern PCB manufacturing. Don't let dust compromise your precision – let's keep it clean together!

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines

Technical Library | 2023-11-20 09:56:42.0

Understanding The Crucial Role Of Dust Collectors In PCB Depaneling Machines Precision is paramount in PCB manufacturing, but it must go hand in hand with cleanliness. The intrusion of dust and debris can wreak havoc on delicate electronics. This article explores the pivotal role of dust collectors, their operation, and their necessity for various PCB depaneling machines. The Dust Collector's Crucial Function Dust collectors, also known as dust extractors, play an indispensable role in PCB manufacturing. When a PCB depaneling machine or a Laser PCB Depaneling machine is in operation, it generates a significant amount of dust. The dust collector promptly engages its vacuum motor to suction fine particles off the PCB, directing them to a collector equipped with a filtration system. Which Models Of PCB Depanelers Require Dust Collector? Several PCB depaneling machines necessitate dust collectors to ensure precision and cleanliness, including: I.C.T-5700 Offline Depaneling Machine, high precision, easy manual operation, dual platform, high efficiency. I.C.T-IR350 In-line depaneling machine, high precision, rapid operation, suitable for integration into the SMT production line for Industry 4.0 and AI automated production. I.C.T-LCO350 Laser cutting ensures cutting accuracy of 0.002, ideal for precise cutting requirements. I.C.T-100A Desktop PCB depaneling machine with compact size and high precision, suitable for smaller-scale operations. The Science Behind PCB Dust Collectors To prevent charged dust particles from adhering to PCBs, PCB depaneling machines are equipped with ionizing guns. These devices emit ions that neutralize static charges, making dust particles less likely to stick to freshly cut PCBs. The Vacuum Effect: Suctioning Away Dust During PCB depaneling, a cloud of dust is produced. The dust collector utilizes a robust suction system, often powered by vacuum motors, to draw dust away from the work area. Collected dust is transported to a designated collection point within the dust collector. A Difference In Design: I.C.T-5700 Vs. I.C.T-IR350 The placement of the dust collection apparatus distinguishes PCB depaneling machines. I.C.T-5700 has a bottom-mounted system capturing falling dust, while I.C.T-IR350 features a top-mounted system preventing dust settling on the work surface. This strategic difference ensures efficient removal of dust and debris, guaranteeing a clean and precise manufacturing process. Check: If you want to learn about the comparison of I.C.T-5700 and I.C.T-IR350. The Importance Of Filter Replacement The efficiency of a dust collector relies on its filter, necessitating periodic replacement every 1-3 years, depending on usage frequency. Regular filter maintenance ensures optimal performance. Dust Collectors: Keep Your PCB Manufacturing Clean And Precise Precision in PCB manufacturing is not solely about cutting-edge machinery but also about cleanliness. If you seek a dust collector for your PCB depaneling machine, contact us today to explore your options. Ensure your operations maintain cleanliness, efficiency, and meet the high standards of modern PCB manufacturing. Don't let dust compromise your precision – let's keep it clean together!

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Fundamentals of Capillary Ion Chromatography

Technical Library | 2021-04-29 01:49:47.0

In this work, we highlight the fundamental differences between conventional IC (4 mm and 2 mm) and Capillary Ion Chromatography.

Thermo Fisher Scientific

Failure Analysis – Using Ion Chromatography And Ion Chromatography/Mass Spec (IC/MS)

Technical Library | 2021-04-29 01:43:34.0

Since the 1980s the electronics industry has utilized ion chromatography (IC) analysis to understand the relationship of ions, and some organics, to product reliability. From component and board fabrication to complete electronic assemblies and their end-use environment, IC analysis has been the de facto method for evaluating ionic cleanliness of electronic hardware.

Foresite Inc.

Column Properties That Make An Impact On Ion Chromatography

Technical Library | 2021-04-29 01:47:17.0

For the separation of ionic species, ion chromatography (IC), a type of liquid chromatography, is the method of choice. The most critical component of this technique is the separation column, which is selected based on factors that include the specific analytes of interest, the sample type and the required detection levels. This article outlines the column parameters that impact the separation of charged species in solution using ion-exchange chromatography and the developments that have continued to redefine what is possible with an IC system.

Thermo Fisher Scientific

Comparison of Testing Methods for Residues on Electronic Hardware

Technical Library | 2023-12-26 17:50:54.0

In this white paper, we discuss the pros and cons of five analytical techniques when applied to residue analysis on electronic assemblies. We evaluate the following for their application and limitations for analyzing both visible and invisible residues: FITR, SEM/EDX, XRF, Ion Chromatography, and ROSE

Foresite Inc.

Whisker Growth In Tin Alloys On Glass-Epoxy Laminate Studied By Scanning ION Microscopy and Energy-Dispersive X-Ray Spectroscopy

Technical Library | 2013-08-22 14:28:58.0

Tin-rich solders are widely applied in the electronic industry in the majority of modern printed circuit boards (PCBs). Because the use of lead-tin solders has been banned in the European Union since 2006, the problem of the bridging of adjacent conductors due to tin whisker growth (limited before by the addition of Pb) has been reborn. In this study tin alloys soldered on glass-epoxy laminate (typically used for PCBs) are considered. Scanning ion microscopy with Focused Ion Beam (FIB) system and energy-dispersive X-ray spectroscopy (EDXS) were used to determine correlations between spatial non-uniformities of the glass-epoxy laminate, the distribution of intermetallic compounds and whisker growth.

The Institute of Electron Technology (ITE)

  1 2 Next

ion searches for Companies, Equipment, Machines, Suppliers & Information

Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

World's Best Reflow Oven Customizable for Unique Applications
Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

Component Placement 101 Training Course
convection smt reflow ovens

Software for SMT placement & AOI - Free Download.
thru hole soldering and selective soldering needs

Training online, at your facility, or at one of our worldwide training centers"