Our services include precision PCB cleaning and ionic cleanliness testing/verification using either the Omega 600 or Zero Ion
Suppliers of Stencil/PCB Cleaners, Soldering Systems, Solder Paste Inspection & Measurement Systems, Ionic Contamination Test Systems, Spray Fluxers and Cleaning Chemicals
New Equipment | Cleaning Agents
As the leader in precision cleaning, ZESTRON is uniquely positioned to offer you the analytical services and expertise needed to ensure you meet your precision cleaning requirements. Ionic contamination testing, SIR testing, ion chromatography, FTIR
New Equipment | Cleaning Agents
VIGON US is a water-based medium specifically developed for the use in ultrasonic, spray-under-immersion and centrifugal cleaning equipment. Based on MPC Technology, VIGON US removes all types of flux residues from electronic assemblies, ceramic hybr
Electronics Forum | Thu Feb 12 11:57:59 EST 2009 | jmiller
i have searched the forum for hours. read all the threads that deals with cleanliness and ionic testing. (http://www.smtnet.com/forums/Index.cfm?CFApp=1&Message_ID=40295) (http://www.smtnet.com/forums/Index.cfm?CFApp=1&Message_ID=22603) (http://www.
Electronics Forum | Wed Sep 02 02:45:01 EDT 2009 | rocko
Hi All, Let me summarize the key facts and findings: 1) This is not a permanent problem. Only one production batch was affected. The cleaning solution was exchanged and now the cleaning process runs normally. 2) Probably the residues are not ion
Used SMT Equipment | Board Cleaners
Austin American Technology's Mega II cleaners are designed for high reliability, environmentally-friendly, solvent-based cleaning and testing applications. These closed-loop, solvent regenerative systems feature quantitative ionic contamination detec
Industry News | 2016-02-24 19:52:18.0
ZESTRON is pleased to announce that Jigar Patel, M.S.Ch.E., Senior Application Engineer, ZESTRON, will present “Thermal Profile Variation and PCB Reliability” during the Flux Reliability II session on Thursday, March 17th, at APEX 2016.
Industry News | 2017-09-28 19:59:35.0
ZESTRON is pleased to announce that Naveen Ravindran, M.S.Ch.E, Application Engineer, will present “Reflow, Multiple Thermal Cycles and Cleaning No Clean Solder Paste and the Impact on PCB Reliability" at the Reliability in Electronics Workshop on October 17th in Austin, Texas and October 19th, in Richardson, Texas.
Technical Library | 2020-11-04 17:49:45.0
OEMs and CMs designing and building electronic assemblies for high reliability applications are typically faced with a decision to clean or not to clean the assembly. If ionic residues remain on the substrate surface, potential failure mechanisms, including dendritic growth by electrochemical migration reaction and leakage current, may result. These failures have been well documented. If a decision to clean substrates is made, there are numerous cleaning process options available. For defluxing applications, the most common systems are spray-in-air, employing either batch or inline cleaning equipment and an engineered aqueous based cleaning agent. Regardless of the type of cleaning process adopted, effective cleaning of post solder residue requires chemical, thermal and mechanical energies. The chemical energy is derived from the engineered cleaning agent; the thermal energy from the increased temperature of the cleaning agent, and the mechanical energy from the pump system employed within the cleaning equipment. The pump system, which includes spray pressure, spray bar configuration and nozzle selection, is optimized for the specific process to create an efficient cleaning system. As board density has increased and component standoff heights have decreased, cleaning processes are steadily challenged. Over time, cleaning agent formulations have advanced to match new solder paste developments, spray system configurations have improved, and wash temperatures (thermal energy) have been limited to a maximum of 160ºF. In most cases, this is due to thermal limitations of the materials used to build the polymer-based cleaning equipment. Building equipment out of stainless steel is an option, but one that may be cost prohibitive. Given the maximum allowable wash temperature, difficult cleaning applications are met by increasing the wash exposure time; including reducing the conveyor speed of inline cleaners or extending wash time in batch cleaners. Although this yields effective cleaning results, process productivity may be compromised. However, high temperature resistant polymer materials, capable of withstanding a 180°F wash temperature, are now available and can be used in cleaning equipment builds. For this study, the authors explored the potential for increasing cleaning process efficiency as a result of an increase in thermal energy due to the use of higher wash temperature. The cleaning equipment selected was an inline cleaner built with high temperature resistant polymer material. For the analysis, standard substrates were used. These were populated with numerous low standoff chip cap components and soldered with both no-clean tin-lead and lead-free solder pastes. Two aqueous based cleaning agents were selected, and multiple wash temperatures and wash exposure times were evaluated. Cleanliness assessments were made through visual analysis of under-component inspection, as well as localized extraction and Ion Chromatography in accordance with current IPC standards.
Technical Library | 2019-09-27 09:14:41.0
One of the most critical factors in preventing corrosion from occurring in electronics is maintaining the state of cleanliness. This is not an easy feat to achieve. Corrosion is defined as the deterioration of a material or its properties due to a reaction of that material with its chemical environment. [1] So, to prevent corrosion from occurring, either the material or the chemical environment must be adjusted. Adjusting the material usually means application of a protective coating or replacing a more reactive material with a less reactive material. Adjusting the chemical environment usually means removing ionic species through cleaning, and removing moisture, usually with a conformal coating or hermetic package. Ionic species and moisture are problematic because they form an electrolyte which is able to conduct ions and electricity. Any metal that comes into contact with the electrolyte can begin to corrode.
See the Nu/Clean Aqua Batch Aqueous Batch Cleaner in operation! Quick, quiet, close loop cleaning at a great price! For technical specifications, visit our website www.TechnicalDev.com.
Training Courses | ONLINE | | Other Courses
Other courses related to electronics manufacturing and assembly
Events Calendar | Mon Jun 08 00:00:00 EDT 2020 - Mon Jun 08 00:00:00 EDT 2020 | ,
Practical Set-Up, Qualification of Cleaning Process in PCB Assembly
Events Calendar | Thu Oct 13 11:00:00 EDT 2016 - Thu Oct 13 11:00:00 EDT 2016 | Austin, USA
QFN: Design - Cleaning - Reliability: What you can't see can cause failure! Free Webinar
Career Center | Shen Zhen, China | Management,Sales/Marketing
Working in GLORYPCB for 10 years.knowing electronic supply chain very well. especially for PCB PCBA assembly and other Electronic Manufacturing Service.Glorypcb is a professional electronic manufacturer located in Shenzhen with three facilities.offe
SMTnet Express, Septemeber 8, 2016, Subscribers: 26,370, Companies: 14,943, Users: 41,052 How Clean is Clean Enough – At What Level Does Each of The Individual Contaminates Cause Leakage and Corrosion Failures in SIR? Terry Munson, Paco Solis
Lewis & Clark | https://www.lewis-clark.com/product-tag/ionic-tester/
Ionic tester Archives - Lewis and Clark Skip to content My Cart: $ 0.00 0 View Cart Checkout No products in the cart. Subtotal: $ 0.00 View Cart Checkout Lewis and Clark We Discover Equipment Opportunities 603-594-4229 sales
ITW EAE | https://www.itweae.com/applications/cleaning/misprint-cleaning
; Cleaning a production board in a machine designed to clean stencils may result in failure to meet ionic cleanliness standards; The stencil cleaning agent is typically not adequate for cleaning reflowed flux residues from the A-side of the assembly