Technical Library: isothermal and cycling (Page 1 of 3)

Reliability of ENEPIG by Sequential Thermal Cycling and Aging

Technical Library | 2019-04-17 21:29:14.0

Electroless nickel electroless palladium immersion gold (ENEPIG) surface finish for printed circuit board (PCB) has now become a key surface finish that is used for both tin-lead and lead-free solder assemblies. This paper presents the reliability of land grid array (LGA) component packages with 1156 pads assembled with tin-lead solder onto PCBs with an ENEPIG finish and then subjected to thermal cycling and then isothermal aging.

Jet Propulsion Laboratory

Solder Joint Reliability Under Realistic Service Conditions

Technical Library | 2014-10-30 01:48:43.0

The ultimate life of a microelectronics component is often limited by failure of a solder joint due to crack growth through the laminate under a contact pad (cratering), through the intermetallic bond to the pad, or through the solder itself. Whatever the failure mode proper assessments or even relative comparisons of life in service are not possible based on accelerated testing with fixed amplitudes, or random vibration testing, alone. Effects of thermal cycling enhanced precipitate coarsening on the deformation properties can be accounted for by microstructurally adaptive constitutive relations, but separate effects on the rate of recrystallization lead to a break-down in common damage accumulation laws such as Miner's rule. Isothermal cycling of individual solder joints revealed additional effects of amplitude variations on the deformation properties that cannot currently be accounted for directly. We propose a practical modification to Miner's rule for solder failure to circumvent this problem. Testing of individual solder pads, eliminating effects of the solder properties, still showed variations in cycling amplitude to systematically reduce subsequent acceleration factors for solder pad cratering. General trends, anticipated consequences and remaining research needs are discussed

Universal Instruments Corporation

Design and Construction Affects on PWB Reliability

Technical Library | 2012-04-26 18:52:37.0

First presented at IPC Apex Expo 2012. The reliability, as tested by thermal cycling, of printed wire boards (PWB) are established by three variables; copper quality, material robustness and design. The copper quality was most influential and could be eva

PWB Interconnect Solutions Inc.

Microstructure and Intermetallic Formation in SnAgCu BGA Components Attached With SnPb Solder Under Isothermal Aging

Technical Library | 2022-10-31 17:09:04.0

The global transition to lead-free (Pb-free) electronics has led component and equipment manufacturers to transform their tin–lead (SnPb) processes to Pb-free. At the same time, Pb-free legislation has granted exemptions for some products whose applications require high long-term reliability. However, due to a reduction in the availability of SnPb components, compatibility concerns can arise if Pb-free components have to be utilized in a SnPb assembly. This compatibility situation of attaching a Pb-free component in a SnPb assembly is generally termed "backward compatibility." This paper presents the results of microstructural analysis of mixed solder joints which are formed by attaching Pb-free solder balls (SnAgCu) of a ball-grid-array component using SnPb paste. The experiment evaluates the Pb phase coarsening in bulk solder microstructure and the study of intermetallic compounds formed at the interface between the solder and the copper pad.

CALCE Center for Advanced Life Cycle Engineering

Temperature Cycling and Fatigue in Electronics

Technical Library | 2020-01-01 17:06:52.0

The majority of electronic failures occur due to thermally induced stresses and strains caused by excessive differences in coefficients of thermal expansion (CTE) across materials.CTE mismatches occur in both 1st and 2nd level interconnects in electronics assemblies. 1st level interconnects connect the die to a substrate. This substrate can be underfilled so there are both global and local CTE mismatches to consider. 2nd level interconnects connect the substrate, or package, to the printed circuit board (PCB). This would be considered a "board level" CTE mismatch. Several stress and strain mitigation techniques exist including the use of conformal coating.

DfR Solutions

Stereolithography and Simultaneous Engineering Speed Products to Market

Technical Library | 1999-05-07 08:04:23.0

Stereolithography is a handy tool not only for speeding a design to market but also in giving customers an early edge. By allowing a form-and-fit sample to be quickly made from a computer model, stereolithography coupled with simultaneous engineering allows customers to see product models early in the design cycle. And if a picture is worth a thousand words, what's a tangible sample worth?

TE Connectivity

Inline Quality Control and Position Detection in Dispensing Systems

Technical Library | 2024-02-06 14:36:04.0

Quality monitoring for verifiable, high-precision application of adhesives and sealants now begins with detecting the position of the component. Dispensing systems are in continuous use and have to work with 100 percent accuracy. And this level of accuracy must be verifiable. Demands on electronic components continue to escalate as these components also need to operate continuously and flawlessly, especially in the automotive and medical sectors. At the same time, there is increasing pressure to automate as companies are looking to achieve the shortest possible cycle times and maximum output.

Scheugenpflug Inc.

Screen-Printing Fabrication and Characterization of Stretchable Electronics

Technical Library | 2017-03-09 17:37:05.0

This article focuses on the fabrication and characterization of stretchable interconnects for wearable electronics applications. Interconnects were screen-printed with a stretchable silver-polymer composite ink on 50-μm thick thermoplastic polyurethane. The initial sheet resistances of the manufactured interconnects were an average of 36.2 mΩ/◽, and half the manufactured samples withstood single strains of up to 74%. The strain proportionality of resistance is discussed, and a regression model is introduced. Cycling strain increased resistance. However, the resistances here were almost fully reversible, and this recovery was time-dependent. Normalized resistances to 10%, 15%, and 20% cyclic strains stabilized at 1.3, 1.4, and 1.7. We also tested the validity of our model for radio-frequency applications through characterization of a stretchable radio-frequency identification tag.

Tampere University of Technology

Lead-Free and Mixed Assembly Solder Joint Reliability Trends

Technical Library | 2022-10-31 17:30:40.0

This paper presents a quantitative analysis of solder joint reliability data for lead-free Sn-Ag-Cu (SAC) and mixed assembly (SnPb + SAC) circuit boards based on an extensive, but non-exhaustive, collection of thermal cycling test results. The assembled database covers life test results under multiple test conditions and for a variety of components: conventional SMT (LCCCs, resistors), Ball Grid Arrays, Chip Scale Packages (CSPs), wafer-level CSPs, and flip-chip assemblies with and without underfill. First-order life correlations are developed for SAC assemblies under thermal cycling conditions. The results of this analysis are put in perspective with the correlation of life test results for SnPb control assemblies. Fatigue life correlations show different slopes for SAC versus SnPb assemblies, suggesting opposite reliability trends under low or high stress conditions. The paper also presents an analysis of the effect of Pb contamination and board finish on lead-free solder joint reliability. Last, test data are presented to compare the life of mixed solder assemblies to that of standard SnPb assemblies for a wide variety of area-array components. The trend analysis compares the life of area-array assemblies with: 1) SAC balls and SAC or SnPb paste; 2) SnPb balls assembled with SAC or SnPb paste.

EPSI Inc.

Selective Soldering: A need for Innovation and Development

Technical Library | 2023-12-18 21:07:29.0

Selective soldering utilises a nozzle to apply solder to components on the underside of printed circuit boards (PCBs). This nozzle can be moved to either perform dips (depositing solder to a single component) or draws (applying solder to several components in a single movement). The selective soldering methodology thereby allows the process to be tailored to specific joints and allows multiple nozzle types to be used if required on the circuit board. Nozzles can vary by size (internal diameter) and shape (making them suitable for different process types). This is all dictated by board design and process requirements. Selection of the nozzle type is dependent upon the product to be soldered and the desired cycle time. Examples of different nozzle types are shown here. Hand-load selective systems must be programmed with the parameters for multiple solder joints. However, many in-line systems are designed to be modular. This modularity allows for multiple solder stations with different conditions/nozzles to achieve low cycle times. Figure 1 shows the two distinct types of selective soldering systems offered by Pillarhouse International Ltd.

Pillarhouse International Ltd.

  1 2 3 Next

isothermal and cycling searches for Companies, Equipment, Machines, Suppliers & Information