Technical Library: matches (Page 1 of 2)

Conformal Coating Inspection

Technical Library | 2019-05-21 17:31:39.0

In the field of electronics manufacturing, the end use of the product will always dictate the processes, procedures, and methods, not only for building the product, but also for testing, cleaning, and protecting the assembly in order to assure the level of quality required for proper operation. The need to protect an electronic assembly from its end use environment may stem from anyone of a number of hazardous (or potentially hazardous) conditions. Choosing the type of protective material is dependent upon matching that material’s characteristics with the conditions to be overcome. Naturally, the use of a protective (conformal) coating will require some method of verification to ensure the desired level and type of protection is achieved.

ACI Technologies, Inc.

Stencil Printing 008004/0201 Aperture Components

Technical Library | 2020-04-14 15:56:32.0

This paper will focus on the application requirements of solder printing small aperture designs, concentrating on 008004 (inch) / 0201 (metric) size components, and the results of a design of experiment printing these challenging apertures. As Moore's law continues to be applied to component miniaturization, the next installment of reduced packaging has arrived in the form of the 008004/0201 for resistors and capacitors. Component size roughly the size of a grain of sand presents specific challenges to the solder printing process. To address these challenges, each aspect of the printing process will need be examined. This includes essential machine requirements, including correct squeegee blades, tooling support, and calibrations, to meet the demanding specifications. The correct match and design of materials will be addressed, focusing on the stencil and substrate design along with solder paste and cleaning solvent requirements. A design of experiment will be reviewed that applies the machine and materials discussed, including the printer and Solder Paste Inspection (SPI) setup and the specific machine parameters used. The results of these DOE's will then be closely examined.

ITW EAE

Mastering Precision: I.C.T's SMT Conformal Coating Valves

Technical Library | 2023-12-06 03:28:49.0

Mastering Precision: I.C.T's SMT Conformal Coating Valves Introduction Of SMT Conformal Coating Valves: In various industries, including electronics, lighting, energy, and life sciences, the SMT conformal coating process plays a critical role. Precision is key, and the choice of a SMT coating valve significantly influences application quality. This article explores I.C.T's SMT conformal coating valves, focusing on the C-0101, C-L101, PJ-01, PJ-01 (with plastic bucket), C-0100, D-0100, D-0300, and the W Series. C-0101 Water Curtain Spray SMT Conformal Coating Valves: The C-0101, a non-atomizing water curtain spray valve, excels with low-viscosity solvent materials. It ensures clean and precise edges in applications like conformal coatings, UV adhesives, backfilling, and volatile substances. C-L101 Rotary Water Curtain Spray Valve: Similar to the C-0101, the C-L101 suits low-viscosity solvent materials, offering a precise edge without splashing for various coatings. PJ-01 Injection Valve (Without Plastic Bucket): Designed for high-precision applications in electronics, lighting, energy, and life sciences, the PJ-01 excels in accurate dispensing and coating. It accommodates various materials, including red glue, liquids, and pastes. PJ-01 Injection Valve (With Plastic Bucket 30CC): The PJ-01, with a 30cc plastic bucket, maintains high precision for complex circuit board applications, offering precise dispensing for materials like red glue, liquids, and pastes. C-0100 Non-Rotating Film Valve: Different from pneumatic atomizing valves, the C-0100 provides precise edge definition without air pressure involvement. It addresses issues related to atomizing drift and fast-drying adhesives, allowing control over the film width. D-0100 Precision Valve: The D-0100, with a unique fluid-sealing structure driven by compressed air, minimizes seal replacement frequency. Suitable for various fluid dispensing, it handles UV adhesives, encapsulating materials, silicones, epoxies, and surface coatings. D-0300 Dispensing Valve: Tailored for precision fluid dispensing at low driving pressure, the D-0300 accommodates a range of materials, including acrylics, silicones, epoxies, and UV adhesives. It's ideal for applications where accuracy and consistency are crucial. W Series: Needle Design Atomization Valves: The W Series offers needle design valves leaving zero residue. Easy to clean without disassembly, they provide adjustable fluid and air pressure for various coating materials, ensuring excellent atomization effects. Analyzing The Options: When selecting a conformal coating valve, consider specific application requirements. C-0101 and C-L101 suit low-viscosity solvent materials, providing clean and precise edges. PJ-01, with or without a plastic bucket, offers high-precision dispensing for complex applications. C-0100 and D-0100 are versatile for various materials, and D-0300 excels in precision dispensing. The W Series offers residue-free needle design atomization valves. Choose based on material, precision, and coating needs. Integration with I.C.T's Conformal Coating Machines: Integral to I.C.T's Conformal Coating machines, these valves enable precise application tailored to specific requirements. Machines like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650 come equipped with a range of valve options catering to diverse production line needs. I.C.T SMT Coating Machine.png Conclusion: Selecting the right conformal coating valve is crucial for consistent, high-quality results. Evaluate options based on material, precision, and coating requirements. I.C.T provides tailored solutions for electronic assembly needs. For detailed insights into coating and dispensing machines, follow the provided link. Professional engineers are ready to assist in designing a production line that perfectly matches your requirements, ensuring optimal performance. Contact us for more information and tailored solutions to elevate your conformal coating processes.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Effect of Cu–Sn intermetallic Compound Reactions on the Kirkendall Void Growth Characteristics in Cu/Sn/Cu Microbumps

Technical Library | 2014-07-02 16:46:09.0

Growth behaviors of intermetallic compounds (IMCs) and Kirkendall voids in Cu/Sn/Cu microbump were systematically investigated by an in-situ scanning electron microscope observation. Cu–Sn IMC total thickness increased linearly with the square root of the annealing time for 600 h at 150°C, which could be separated as first and second IMC growth steps. Our results showed that the growth behavior of the first void matched the growth behavior of second Cu6Sn5, and that the growth behavior of the second void matched that of the second Cu3Sn. It could be confirmed that double-layer Kirkendall voids growth kinetics were closely related to the Cu–Sn IMC growth mechanism in the Cu/Sn/Cu microbump, which could seriously deteriorate the mechanical and electrical reliabilities of the fine-pitch microbump systems

Nepes Corporation

Automated Inspection Of PCB Components Using A Genetic Algorithm Template-Matching Approach

Technical Library | 2021-04-15 14:44:20.0

Automated inspection of surface mount PCB boards is a requirement to assure quality and to reduce manufacturing scrap costs and rework. This paper investigates methodologies for locating and identifying multiple objects in images used for surface mount device inspection. One of the main challenges for surface mount device inspection is component placement inspection.

Springer-Verlag

Effect of Encapsulation Materials on Tensile Stress during Thermo-Mechanical Cycling of Pb-Free Solder Joints

Technical Library | 2019-03-06 21:26:14.0

Electronic assemblies use a large variety of polymer materials with different mechanical and thermal properties to provide protection in harsh usage environments. However, variability in the mechanical properties such as the coefficient of thermal expansion and elastic modulus effects the material selection process by introducing uncertainty to the long term impacts on the reliability of the electronics. Typically, the main reliability issue is solder joint fatigue which accounts for a large amount of failures in electronic components. Therefore, it is necessary to understand the effect of polymer encapsulations (coatings, pottings and underfills) on the solder joints when predicting reliability.This paper presents the construction and validation of a thermo-mechanical tensile fatigue specimen. The thermal cycling range was matched with potting expansion properties in order to vary the magnitude of tensile stress imposed on solder joints

DfR Solutions

LEAD-FREE FLUX TECHNOLOGY AND INFLUENCE ON CLEANING

Technical Library | 2022-10-11 17:27:08.0

Lead-free flux technology for electronic industry is mainly driven by high soldering temperature, high alloy surface tension, miniaturization, air soldering due to low cost consideration, and environmental concern. Accordingly, the flux features desired included high thermal stability, high resistance against burn-off, high oxidation resistance, high oxygen barrier capability, low surface tension, high fluxing capacity, slow wetting, low moisture pickup, high hot viscosity, and halogen-free. For each of the features listed above, corresponding desired chemical structures can be deduced, and the impact of those structures on flux residue cleanability can be speculated. Overall, lead-free flux technology results in a greater difficulty in cleaning. Cleaner with a better matching solvency for the residue as well as a higher cleaning temperature or agitation are needed. Alkaline and polar cleaner are often needed to deal with the larger quantity of fluxing products. Reactive cleaner is also desired to address the side reaction products such as crosslinked residue.

Indium Corporation

The Use of an Available Color Sensor for Burn-In of LED Products

Technical Library | 2015-06-18 12:42:57.0

In the recent past, the Light Emitting Diode (LED) was hailed as the new energy efficient light source that would never have to be replaced. There were claims of 50,000+ hrs lifetime for the humble LED. That story has changed over the last few years as the number and diversity of the LED based products has increased. This is not to say that the original evidence was incorrect, but the initial enthusiastic estimates from the labs did not match the ultimate test, customers. As a result of poor quality products affecting the overall opinion of LED based products, it is critical that manufacturers can be confident in the quality of their product. In current times we want to have products certified, checked and ensure that we have the best quality. For the purposes of this paper we will look at one aspect of LED product, and this is the Lumen maintenance and estimated lifetime. The method described here does not seek to replace using high quality rating labs, but hopefully will allow the manufacturer to know with confidence that their prototype product, upon going to certification labs will be of a high enough quality that no expensive re-designs are required.

Feasa Enterprises Limited

Screen Making for Printed Electronics- Specification and Tolerancing

Technical Library | 2018-03-28 14:54:36.0

Six decades of legacy experience makes the specification and production of screens and masks to produce repeatable precision results mostly an exercise in matching engineering needs with known ink and substrate performance to specify screen and stencil characteristics. New types of functional and electronic devices, flex circuits and medical sensors, industrial printing, ever finer circuit pitch, downstream additive manufacturing processes coupled with new substrates and inks that are not optimized for the rheological, mechanical and chemical characteristics for the screen printing process are becoming a customer driven norm. Many of these materials do not work within legacy screen making, curing or press set-up parameters. Many new materials and end uses require new screen specifications.This case study presents a DOE based method to pre-test new materials to categorize ink and substrate rheology, compatibility and printed feature requirement to allow more accurate screen recipes and on-press setting expectations before the project enters the production environment where time and materials are most costly and on-press adjustment methods may be constrained by locked, documented or regulatory processes, equipment limitations and employee experience.

Hazardous Print Consulting Inc

High and Matched Refractive Index Liquid Adhesives for Optical Device Assembly

Technical Library | 2020-09-30 19:23:47.0

There is an increase in the number of optical sensors and cameras being integrated into electronics devices. These go beyond cell phone cameras into automotive sensors, wearables, and other smart devices. The applications can be lens bonding, waveguide imprinting, or other applications where the adhesive is in the optical pathway. To support these various optical applications, new materials with tailorable optical properties are required. There is often a mismatched refractive index between plastic lenses such as PC (Poly Carbonate), COP (Cyclo Olefin Polymer), COC (Cyclo Olefin Copolymer), PMMA (Poly Methyl Methacrylate), and UV curable liquid adhesive. A UV curable liquid adhesive is needed where you can alter the refractive index from 1.470 to 1.730, and maintain high optical performance as yellowness index, haze, and transmittance. This wide range of refractive index possibilities provides optimized optical design. Using particular plastic lens must consider how chemical attack is occurring during the process. Another consideration is that before the UV curable liquid adhesive is cured, chemical raw component can attack the plastic lens which then cracks and delaminates. We will also show engineering and reliability data which defined root cause and provided how optical performance is maintained under different reliability conditions.

Kyoritsu Chemical & Co., Ltd

  1 2 Next

matches searches for Companies, Equipment, Machines, Suppliers & Information