Technical Library: matrix and trays (Page 1 of 1)

Dust removal in temperature and humidity Test Chamber (2/2)

Technical Library | 2019-05-21 00:21:26.0

Continue to talk about the dust removal from temperature humidity test chamber. Cleaning and maintenance: 1) Pls remove internal impurities inisde chamber before operation. 2) The power distribution room should be cleaned at least once a year, and the dust can be removed by vacuum cleaner. 3) The exterior chamber must also be cleaned more than once a year, which can be wiped with soapy water. Inspection and maintenance of humidifier: The water storage in humidifier should be replaced once a month to ensure clean water quality, humidifying water tray should be cleaned once a month to ensure smooth flow of water. The inspection of over-temperature protector:during the test: If the temperature is over 20 ℃ ~ 30 ℃ than the maximum value setted,the power supply of the heater will stop, the "OVERHEAT" overt-emperature warning light will automatically turn on but the fan is still in operation, if the equipment runs without operator around,the operator should check the over-temperature protector in advance to ensure wether it has been setted properly before start [wet ball over-temperature protector set to 120 ℃].

Symor Instrument Equipment Co.,Ltd

An Experimental Investigation of Fracture Toughness and Volume Resistivity of Symmetric Laminated Epoxy/ Glass Fiber/CNT multiscale composites

Technical Library | 2022-01-26 15:26:56.0

In this work an attempt is made to improve the fracture toughness and electrical conductivity of epoxy/glass fiber based laminates by the inclusion of carbon nanotube (CNT) fillers. The fiber orientation of the epoxy/ glass fiber (GF) fabric laminates was optimized based on estimation of mechanical properties. The carboxylic acid functionalized CNTs were incorporated into epoxy matrix by ultra-sonication method. The nano filled epoxy resin was used to prepare laminates with 30/45 GF fabric orientation. The CNT content was varied and its effect on the tensile properties was determined. The fracture toughness of multiphase composites was estimated using single edge notch bend (SENB) test. The presence of CNTs improved the fracture toughness by a crack bridging mechanism. The volume resistivity of multiphase composites was found to be superior to the conventional epoxy/CNT composite. The presence of glass fabric reduces the number of inter-tube contacts contributing to the reduction in volume resistivity.

Amrita University

Approaches to Overcome Nodules and Scratches on Wire Bondable Plating on PCBs

Technical Library | 2020-08-27 01:22:45.0

Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads. The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable. Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.

Teledyne DALSA

How Clean is Clean Enough – At What Level Does Each of The Individual Contaminates Cause Leakage and Corrosion Failures in SIR?

Technical Library | 2016-09-08 16:27:49.0

In this investigation a test matrix was completed utilizing 900 electrodes (small circuit board with parallel copper traces on FR-4 with LPI soldermask at 6, 10 and 50 mil spacing): 12 ionic contaminants were applied in five concentrations to three different spaced electrodes with five replicas each (three different bare copper trace spacing / five replications of each with five levels of ionic concentration). The investigation was to assess the electrical response under controlled heat and humidity conditions of the known applied contamination to electrodes, using the IPC SIR (surface insulation resistance) J-STD 001 limits and determine at what level of contamination and spacing the ionic / organic residue has a failing effect on SIR.

Foresite Inc.

Effect of Morphology of Calcium Carbonate on Toughness Behavior and Thermal Stability of Epoxy-Based Composites

Technical Library | 2020-10-14 14:49:14.0

In this study, the modification of an epoxy matrix with different amounts of cube-like and rod-like CaCO3 nanoparticles was investigated. The effects of variations in the morphology of CaCO3 on the mechanical properties and thermal stability of the CaCO3/epoxy composites were studied. The rod-like CaCO3/epoxy composites (EP-rod) showed a higher degradation temperature (4.5 _C) than neat epoxy. The results showed that the mechanical properties, such as the flexural strength, flexural modulus, and fracture toughness of the epoxy composites with CaCO3 were enhanced by the addition of cube-like and rod-like CaCO3 nanoparticles. Moreover, the mechanical properties of the composites were enhanced by increasing the amount of CaCO3 added but decreased when the filler content reached 2%. The fracture toughness Kic and fracture energy release rate Gic of cube-like and rod-like CaCO3/epoxy composites (0.85/0.74 MPa m1/2 and 318.7/229.5 J m

Inha University

Waste-Printed Circuit Board Recycling: Focusing on Preparing Polymer Composites and Geopolymers

Technical Library | 2021-06-07 19:03:05.0

The waste from end-of-life electrical and electronic equipment has become the fastest growing waste problem in the world. The difficult-to-treat waste-printed circuit boards (WPCBs), which are nearly 3−6 wt % of the total electronic waste, generate great environmental concern nowadays. For WPCB treatment and recycling, the mechanical−physical method has turned out to be more technologically and economically feasible. In this work, the mechanical−physical treatment and recycling technologies for WPCBs were investigated, and future research was directed as well. Removing electric and electronic components(EECs) from WPCBs is critical for their crushing and metal recovery; however, environmentally friendly and high-efficiency removal techniques need be developed. Concentrated metals rich in Cu, Al, Au, Pb, and Sn recovered from WPCBs need be further refined to add to their economic values. The low value added nonmetallic fraction of waste-printed circuit boards (NMF-WPCBs) accounts for approximately 60 wt % of the WPCBs. From the perspective of environmental management, a zero-waste approach to recycling them should be developed to gain values. Preparing polymer composites and geopolymers offers many advantages and has potential applications in various fields, especially as construction and building materials. However, the mechanical and thermal properties of NMF-WPCBs composites should be further improved for preparing polymer composites. Surface modification or filler blending could be applied to improve the interfacial comparability between NMF-WPCBs and the polymer matrix. The NMFWPCBs shows potential in preparing cement mortar and geological polymers, but the environmental safety resulting from metals needs to be taken into account. This study will provide a significant reference for the industrial recycling of NMF-WPCBs

Zhejiang University

  1  

matrix and trays searches for Companies, Equipment, Machines, Suppliers & Information