Technical Library: mrs (Page 1 of 2)

Printed Circuit Board Technology Inspired Stretchable Circuits

Technical Library | 2013-10-10 16:28:21.0

In the past 15 years, stretchable electronic circuits have emerged as a new technology in the domain of assembly, interconnections, and sensor circuit technologies. In the meantime, a wide variety of processes using many different materials have been explored in this new field. In the current contribution, we present an approach inspired by conventional rigid and flexible printed circuit board (PCB) technology.

Centre for Microsystems Technology - Ghent University

A High Performance and Cost Effective Molded Array Package Substrate

Technical Library | 2010-11-18 19:19:50.0

In this article we present both a relatively new and innovative family of packages that is suitable for medium pin count needs and an innovative method for fabricating the substrates for such a package. With respect to lead count, this packaging family is

EoPlex Technologies, Inc.

An Overview of the Intel TFLOPS Supercomputer

Technical Library | 1999-05-07 09:54:35.0

In this paper, we give an overview of the ASCI Option Red Supercomputer. The motivation for building this supercomputer is presented and the hardware and software views of the machine are described in detail. We also briefly discuss what it is like..

Intel Corporation

Pb-free solders: Comparison of different geometrical models in calculating of enthalpy of mixing of In-Sn-Zn ternary system.

Technical Library | 2014-05-22 17:10:37.0

In this paper, the general solution model of Chou has been used to predict the integral enthalpies of mixing of liquid In-Sn-Zn ternary alloys in five selected sections, xIn/xSn = 0.15/0.85, 0.34/0.66, 0.50/0.50, 0.67/0.33 and 0.85/0.15. The other traditional models such as Kohler, Muggianu, Toop and Hillert are also included in calculations. Comparison with literature data was done and showed reasonable agreement with Toop and Hillert asymmetric models.

Université Mohammed V-Agdal

Ultra-Thin Chips For High-Performance Flexible Electronics

Technical Library | 2020-01-15 23:54:34.0

Flexible electronics has significantly advanced over the last few years, as devices and circuits from nanoscale structures to printed thin films have started to appear. Simultaneously, the demand for high-performance electronics has also increased because flexible and compact integrated circuits are needed to obtain fully flexible electronic systems. It is challenging to obtain flexible and compact integrated circuits as the silicon based CMOS electronics, which is currently the industry standard for high-performance, is planar and the brittle nature of silicon makes bendability difficult. For this reason, the ultra-thin chips from silicon is gaining interest. This review provides an in-depth analysis of various approaches for obtaining ultra-thin chips from rigid silicon wafer. The comprehensive study presented here includes analysis of ultra-thin chips properties such as the electrical, thermal, optical and mechanical properties, stress modelling, and packaging techniques. The underpinning advances in areas such as sensing, computing, data storage, and energy have been discussed along with several emerging applications (e.g., wearable systems, m-Health, smart cities and Internet of Things etc.) they will enable. This paper is targeted to the readers working in the field of integrated circuits on thin and bendable silicon; but it can be of broad interest to everyone working in the field of flexible electronics.

Bendable Electronics and Sensing Technologies (BEST)

High-Performance Ink-Jet Printed Graphene Resistors Formed With Environmentally-Friendly Surfactant-Free Inks For Extreme Thermal Environments

Technical Library | 2018-01-11 10:48:48.0

Ink-jet printing is poised to impact the manufacturing of devices that are particularly attractive for flexible electronics, as more suitable and printable fluids become available. The addition of surfacants in the preparation of the inks usually results in additional process steps, potentially increasing cost, as well as material waste, where the surfactants also often have a negative impact on specific properties of the printed features, such as comprising electrical conductivity of metallic structures. (...)In this work, we have successfully formulated a suitable ink derived from a mixture of terpineolin cyclohexanone as a more environmentally friendly option for the exfoliation of bulk graphite, which we elaborate upon in more detail here.

University of Texas

Flexible Hybrid Circuit Fully Inkjet-Printed: Surface Mount Devices Assembled By Silver Nanoparticles-Based Inkjet Ink

Technical Library | 2018-06-27 16:47:13.0

Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology

Universitat de Barcelona

Laser-Based Methodology for the Application of Glass as a Dielectric and Cu Pattern Carrier for Printed Circuit Boards

Technical Library | 2018-11-07 20:48:01.0

Glass offers a number of advantages as a dielectric material, such as a low coefficient of thermal expansion (CTE), high dimensional stability, high thermal conductivity and suitable dielectric constant. These properties make glass an ideal candidate for, among other things, package substrate and high-frequency PCB applications. We report here a novel process for the production of printed circuit boards and integrated circuit packaging using glass as both a dielectric medium and a platform for wiring simultaneously.

Electro Scientific Industries

Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers

Technical Library | 2017-06-08 17:31:23.0

Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology.

DIEEI-University of Catania

The Future of Solid-State Electronics

Technical Library | 1999-05-06 13:44:43.0

This paper explores the direction in which IC technology is headed, highlights potential roadblocks and possible solutions, and discusses some of the physical considerations that could determine the ultimate limits of integration.


  1 2 Next

mrs searches for Companies, Equipment, Machines, Suppliers & Information