Technical Library: pass (Page 1 of 36)

Throughput vs. Wet-Out Area Study for Package on Package (PoP) Underfill Dispensing

Technical Library | 2012-12-17 22:05:22.0

Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.


Utility of Dual Applicators for Non-Atomized Conformal Coating to Improve High-Volume Manufacturing Optimization

Technical Library | 2017-12-07 10:35:50.0

Electronics manufacturers protect their circuit boards with conformal coatings. Conformal coatings serve as a barrier from environmental hazards and internal shorts, tin whiskers, and corrosion at the board level. Within conformal coatings different material chemistries specialize in shielding from an array of hazards and can be applied by multiple methods. The most common method is atomized spray which disperses the material into a fine mist. Alternatively, non-atomized coating controls the materials' dispense shape while maintaining the original liquid form. While some applications demand atomized spray and other scenarios overlap between atomized and non-atomized coating, this paper focuses on the circumstances where materials are ideally suited for non-atomized, selective coating.


An Air-Assisted "Airless" Conformal Coating Process

Technical Library | 1999-08-27 09:18:58.0

A need to move beyond aerosol sprays and dipping leads to a development that answers tough requirements for controlled coverage, low waste, and environmental restrictions.


Conformal Coating Process Characterization Considerations

Technical Library | 2013-09-25 20:57:24.0

Conformal coating is an enabling process that allows for the ruggedizing of electronic devices and modules. As the process increases the durability of electronics that are subjected to various end-use environmental conditions, it adds value to the product. While it does add value, consumers and manufacturers expect the electronics to work when subjected to dirt, humidity, moisture, corrosive materials, and various other contaminants. This expectation results in a drive to minimize the cost of the process. The lowest cost of ownership for a conformal coating process occurs by utilizing automated selective conformal coating equipment.


Thermal Residue Fingerprinting: A Revolutionary Approach to Develop a Selective Cleaning Solution

Technical Library | 2009-07-01 09:24:25.0

During the last 5 years, the processes to remove flux residues especially for lead-free and challenging geometries have demonstrated new cleaning obstacles which have to be overcome.i A new methodology has been recently developed to further increase the propensity for successful cleaning.ii At the core of this method is the thermal identification of the residue matrix. Thermal energy changes the physical state, i.e. transitions between liquid, solid and gas phases. By taking advantage of such specific information during phase transitions, the cleaning process can be tailored to such settings, which in turn increases the cleaning success significantly.

ZESTRON Americas

Back to Basics – Why Clean?

Technical Library | 2011-06-28 16:10:29.0

ZESTRON America’s spring edition of ZESTRON News goes back to basics providing the latest information on the topics of cleaning in the electronics manufacturing industry.

ZESTRON Americas

Dispensing EMI Shielding Materials: An Alternative to Sputtering

Technical Library | 2020-02-26 23:24:02.0

Shielding electronic systems against electromagnetic interference (EMI) has become a hot topic. Technological advancements toward 5G standards, wireless charging of mobile electronics, in-package antenna integration, and system-inpackage (SiP) adoption are driving the need to apply more effective EMI shielding and isolation to component packages and larger modules. For conformal shielding, EMI shielding materials for exterior package surfaces have mostly been applied with a physical vapor deposition (PVD) process of sputtering, leveraging front-end packaging technologies to back-end packaging applications. However, sputtering technology challenges in scalability and cost along with advancements in dispensable materials are driving considerations for alternative dispensing techniques for EMI shielding.


Considerations in Dispensing Conformal Coatings

Technical Library | 1999-08-27 09:27:10.0

Conformal coating is a material that is applied to electronic products or assemblies to protect them from solvents, moisture, dust or other contaminants that may cause harm. Coating also prevents dendrite growth, which may result in product failure. This paper will discuss the variables that affect the application of conformal coatings, and review in detail those variables that impact the process of selective coating of printed circuit boards.


Dam and Fill Encapsulation for Microelectronic Packages

Technical Library | 1999-08-27 09:29:49.0

Contract packaging houses have to contend with a large mix of die types and products. Flexibility and quick turnaround of package types is a must in this industry. Traditional methods of die encapsulation, (i.e., use of transfer-molding techniques), are only cost effective when producing a large number of components. Liquid encapsulants now provide similar levels of reliability1, and are cost effective...


Profiling for Successful BGA/CSP Rework

Technical Library | 2013-08-14 14:06:48.0

This paper discusses how to successfully profile a printed circuit board when reworking Ball Grid Array and Chip Scale Packages.


  1 2 3 4 5 6 7 8 9 10 Next

pass searches for Companies, Equipment, Machines, Suppliers & Information