Technical Library: pcb cleaning machine (Page 1 of 44)

Placement Optimisation in a Lean Manufacturing Environment

Technical Library | 2008-02-20 21:42:52.0

Tier 2 and Tier 3 EMS companies face increasing pressure from competition in low-cost manufacturing countries to produce assembled boards at lower cost, with increased complexity and to tighter deadlines. They also face an increasing amount of high-mix, small-to-mediumvolume production runs. Even OEMs find it hard to predict what products they will be manufacturing in three to five years time, driving the need to invest in highly flexible production tools that will cater to their needs over the lifetime of the equipment. This paper examines methodologies for optimising the process, improving stock control and providing greater traceability using lean manufacturing techniques.

EUROPLACER

Higher Defluxing Temperature and Low Standoff Component Cleaning - A Connection?

Technical Library | 2020-11-04 17:49:45.0

OEMs and CMs designing and building electronic assemblies for high reliability applications are typically faced with a decision to clean or not to clean the assembly. If ionic residues remain on the substrate surface, potential failure mechanisms, including dendritic growth by electrochemical migration reaction and leakage current, may result. These failures have been well documented. If a decision to clean substrates is made, there are numerous cleaning process options available. For defluxing applications, the most common systems are spray-in-air, employing either batch or inline cleaning equipment and an engineered aqueous based cleaning agent. Regardless of the type of cleaning process adopted, effective cleaning of post solder residue requires chemical, thermal and mechanical energies. The chemical energy is derived from the engineered cleaning agent; the thermal energy from the increased temperature of the cleaning agent, and the mechanical energy from the pump system employed within the cleaning equipment. The pump system, which includes spray pressure, spray bar configuration and nozzle selection, is optimized for the specific process to create an efficient cleaning system. As board density has increased and component standoff heights have decreased, cleaning processes are steadily challenged. Over time, cleaning agent formulations have advanced to match new solder paste developments, spray system configurations have improved, and wash temperatures (thermal energy) have been limited to a maximum of 160ºF. In most cases, this is due to thermal limitations of the materials used to build the polymer-based cleaning equipment. Building equipment out of stainless steel is an option, but one that may be cost prohibitive. Given the maximum allowable wash temperature, difficult cleaning applications are met by increasing the wash exposure time; including reducing the conveyor speed of inline cleaners or extending wash time in batch cleaners. Although this yields effective cleaning results, process productivity may be compromised. However, high temperature resistant polymer materials, capable of withstanding a 180°F wash temperature, are now available and can be used in cleaning equipment builds. For this study, the authors explored the potential for increasing cleaning process efficiency as a result of an increase in thermal energy due to the use of higher wash temperature. The cleaning equipment selected was an inline cleaner built with high temperature resistant polymer material. For the analysis, standard substrates were used. These were populated with numerous low standoff chip cap components and soldered with both no-clean tin-lead and lead-free solder pastes. Two aqueous based cleaning agents were selected, and multiple wash temperatures and wash exposure times were evaluated. Cleanliness assessments were made through visual analysis of under-component inspection, as well as localized extraction and Ion Chromatography in accordance with current IPC standards.

ZESTRON Americas

Back to Basics – Why Clean?

Technical Library | 2011-06-28 16:10:29.0

ZESTRON America’s spring edition of ZESTRON News goes back to basics providing the latest information on the topics of cleaning in the electronics manufacturing industry.

ZESTRON Americas

SMT007-MIRTEC Intelligent Factory Automation Article-November 2020

Technical Library | 2020-12-02 20:36:54.0

Industry 4.0 is a topic of much discussion within the electronics manufacturing industry. Manufacturers and vendors are trying to come to terms with what that means. In the most simplistic of terms, Industry 4.0 is a trend toward automation and data exchange within the manufacturing process. This basically requires connectivity and communication from machine to machine within the manufacturing line. The challenge is to collect data from each of the systems within the line and make that data available to the rest of the machines. Without test and inspection, there is no Industry 4.0. The whole purpose of test and inspection is to collect actionable data that may be used to reduce defects and maximize efficiency within the manufacturing line. The goal is to minimize scrap and get a really good handle on those process parameters that need to be put in place to manufacture products the right way the first time. For maximum efficiency, three inspection systems are required within the production line. These are solder paste inspection (SPI) post-solder deposition, automated optical inspection (AOI) post-placement, and AOI post-reflow. This requires a substantial investment; however, the combination of all three inspection machines is really the only true way to provide feedback for each stage of the manufacturing process.

MIRTEC Corp

Fluid Flow Mechanics Key To Low Standoff Cleaning

Technical Library | 2009-09-18 14:42:37.0

In recent years, various studies have been issued on cleaning under low standoff components; most however, with incomplete information. It is essential to revisit and describe the latest challenges in the market, identifying obvious gaps in available information. Such information is crucial for potential and existing users to fully address the cleanliness levels under their respective components. With the emergence of lead-free soldering and even smaller components, new challenges have arisen including cleaning in gaps of less than 1-mil.

ZESTRON Americas

The Industry Requirement for 2D and 3D Inspection Technology in a Single AOI Platform

Technical Library | 2012-11-21 18:57:58.0

The continuing evolution toward advanced miniature packaging has led to ever increasing PCB density and complexity. As the manufacturing process becomes progressively more complicated, there is an ever increasing probability for defects to occur on finished PCB assemblies. For years the Automated Optical Inspection (AOI) industry has relied solely upon two-dimensional (2D) inspection principles to test the quality of workmanship on electronic assemblies. While advancements in conventional 2D optical inspection have made this technology suitable for detecting such defects as missing components, wrong components, proper component orientation, insufficient solder, and solder bridges; there is an inherent limitation in the ability to inspect for co-planarity of ultra-miniature chips, leaded device, BGA and LED packages.

MIRTEC Corporation

Considerations in Dispensing Conformal Coatings

Technical Library | 1999-08-27 09:27:10.0

Conformal coating is a material that is applied to electronic products or assemblies to protect them from solvents, moisture, dust or other contaminants that may cause harm. Coating also prevents dendrite growth, which may result in product failure. This paper will discuss the variables that affect the application of conformal coatings, and review in detail those variables that impact the process of selective coating of printed circuit boards.

Nordson ASYMTEK

Utility of Dual Applicators for Non-Atomized Conformal Coating to Improve High-Volume Manufacturing Optimization

Technical Library | 2017-12-07 10:35:50.0

Electronics manufacturers protect their circuit boards with conformal coatings. Conformal coatings serve as a barrier from environmental hazards and internal shorts, tin whiskers, and corrosion at the board level. Within conformal coatings different material chemistries specialize in shielding from an array of hazards and can be applied by multiple methods. The most common method is atomized spray which disperses the material into a fine mist. Alternatively, non-atomized coating controls the materials' dispense shape while maintaining the original liquid form. While some applications demand atomized spray and other scenarios overlap between atomized and non-atomized coating, this paper focuses on the circumstances where materials are ideally suited for non-atomized, selective coating.

Nordson ASYMTEK

Reflow Soldering Processes and Troubleshooting: SMT, BGA, CSP and Flip Chip Technologies

Technical Library | 2021-01-03 19:24:52.0

Reflow soldering is the primary method for interconnecting surface mount technology (SMT) applications. Successful implementation of this process depends on whether a low defect rate can be achieved. In general, defects often can be attributed to causes rooted in all three aspects, including materials, processes, and designs. Troubleshooting of reflow soldering requires identification and elimination of root causes. Where correcting these causes may be beyond the reach of manufacturers, further optimizing the other relevant factors becomes the next best option in order to minimize the defect rate.

SMTnet

Dam and Fill Encapsulation for Microelectronic Packages

Technical Library | 1999-08-27 09:29:49.0

Contract packaging houses have to contend with a large mix of die types and products. Flexibility and quick turnaround of package types is a must in this industry. Traditional methods of die encapsulation, (i.e., use of transfer-molding techniques), are only cost effective when producing a large number of components. Liquid encapsulants now provide similar levels of reliability1, and are cost effective...

Nordson ASYMTEK

  1 2 3 4 5 6 7 8 9 10 Next

pcb cleaning machine searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, Services, Training, and Consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep & Sole Agent in North America for Shuttle Star BGA Rework Stations.

Training Provider / Service Provider / Manufacturer's Rep / Equipment Dealer / Broker / Consultant

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830