Technical Library: philips and laser (Page 1 of 2)

KE-2050/KE-2060 Causes and Countermeasures of Patch Failure

Technical Library | 2023-07-22 02:26:05.0

Patch offset; Uneven patches throughout the substrate (each substrate is offset in a different way); Only part of the substrate is offset; Only certain components are offset; The patch Angle is offset; Component absorption error; Laser identification (component identification) error; Nozzle loading and unloading error; Mark (BOC mark, IC mark) identification error; Image recognition error (KE-2060 only); Analysis of the main reasons for throwing material. More information about KINGSUN please Contact US at jenny@ksunsmt.com or visit www.ksunsmt.com

DONGGUAN KINGSUN AUTOMATION TECHNOLOGY CO.,LTD

Evaluation of Stencil Foil Materials, Suppliers and Coatings

Technical Library | 2011-12-08 17:46:42.0

The past few years have brought PCB assemblers a multitude of choices for SMT stencil materials and coatings. In addition to the traditional laser-cut stainless steel (SS) or electroformed nickel, choices now include SS that has been optimized for laser c

Shea Engineering Services

A High Performance and Cost Effective Molded Array Package Substrate

Technical Library | 2010-11-18 19:19:50.0

In this article we present both a relatively new and innovative family of packages that is suitable for medium pin count needs and an innovative method for fabricating the substrates for such a package. With respect to lead count, this packaging family is

EoPlex Technologies, Inc.

Print Performance Studies Comparing Electroform and Laser-Cut Stencils

Technical Library | 2015-11-05 15:09:27.0

There has been recent activity and interest in Laser-Cut Electroform blank foils as an alternative to normal Electroform stencils. The present study will investigate and compare the print performance in terms of % paste transfer as well the dispersion in paste transfer volume for a variety of Electroform and Laser-Cut stencils with and without post processing treatments. Side wall quality will also be investigated in detail. A Jabil solder paste qualification test board will be used as the PCB test vehicle.

Photo Stencil LLC

Investigation of Cutting Quality and Mitigation Methods for Laser Depaneling of Printed Circuit Boards

Technical Library | 2019-09-11 23:33:04.0

There are numerous techniques to singulate printed circuit boards after assembly including break-out, routing, wheel cutting and now laser cutting. Lasers have several desirable advantages such as very narrow kerf widths as well as virtually no dust, no mechanical stress, visual pattern recognition and fast set-up changes. The very narrow kerf width resulting from laser ablation and the very tight tolerance of the cutting path placement allows for more usable space on the panel. However, the energy used in the laser cutting process can also create unwanted products on the cut walls as a result of the direct laser ablation. The question raised often is: What are these products, and how far can the creation of such products be mitigated through variation of the laser cutting process, laser parameters and material handling? This paper discusses the type and quantity of the products found on sidewalls of laser depaneled circuit boards and it quantifies the results through measurements of breakdown voltage, as well as electrical impedance. Further this paper discusses mitigation strategies to prevent or limit the amount of change in surface quality as a result of the laser cutting process. Depending on the final application of the circuit board it may prompt a need for proper specification of the expected results in terms of cut surface quality. This in turn will impact the placement of runs and components during layout. It will assist designers and engineers in defining these parameters sufficiently in order to have a predictable quality of the circuit boards after depaneling.

LPKF Laser & Electronics

Streaming Machine Learning and Online Active Learning for Automated Visual Inspection

Technical Library | 2021-11-22 20:39:44.0

Quality control is a key activity performed by manufacturing companies to verify product conformance to the requirements and specifications. Standardized quality control ensures that all the products are evaluated under the same criteria. The decreased cost of sensors and connectivity enabled an increasing digitalization of manufacturing and provided greater data availability. Such data availability has spurred the development of artificial intelligence models, which allow higher degrees of automation and reduced bias when inspecting the products. Furthermore, the increased speed of inspection reduces overall costs and time required for defect inspection. In this research, we compare five streaming machine learning algorithms applied to visual defect inspection with real world data provided by Philips Consumer Lifestyle BV. Furthermore, we compare them in a streaming active learning context, which reduces the data labeling effort in a real-world context. Our results show that active learning reduces the data labeling effort by almost 15% on average for the worst case, while keeping an acceptable classification performance. The use of machine learning models for automated visual inspection are expected to speed up the quality inspection up to 40%.

Jožef Stefan Institute

Thermal Reliability of Laser Ablated Microvias and Standard Through-Hole Technologies as a Function of Materials and Processing

Technical Library | 2021-12-21 23:15:44.0

High Density Interconnect (HDI) technologies are being used widely in Asia and Europe in consumer electronics for portable wireless communication and computing, digital imaging, and chip packaging. Although North America lags behind in developing process capability for this technology, HDI will become a significant business segment for North America. For this to happen, the printed circuit board shops will have to become process capable in fabricating fine lines and spaces, and also be capable in forming and plating microvias.

Isola Group

A Study to Determine the Impact of Solder Powder Mesh Size and Stencil Technology Advancement on Deposition Volume when Printing Solder Paste

Technical Library | 2017-04-13 16:14:27.0

The drive to reduced size and increased functionality is a constant in the world of electronic devices. In order to achieve these goals, the industry has responded with ever-smaller devices and the equipment capable of handling these devices. The evolution of BGA packages and leadless devices is pushing existing technologies to the limit of current assembly techniques and materials.As smaller components make their way into the mainstream PCB assembly market, PCB assemblers are reaching the limits of Type 3 solder paste, which is currently in use by most manufacturers.The goal of this study is to determine the impact on solder volume deposition between Type 3, Type 4 and Type 5 SAC305 alloy powder in combination with stainless steel laser cut, electroformed and the emerging laser cut nano-coated stencils. Leadless QFN and μBGA components will be the focus of the test utilizing optimized aperture designs.

AIM Solder

Soldering fume in electronics manufacturing - damaging effects and solutions for removal

Technical Library | 2017-11-10 00:58:37.0

Modern electronics manufacturing is made up by a multiplicity of different separation and joining processes, with the later surely taking the vast majority of production technology. Alongside gluing, welding and laser processes, soldering still holds a primary position in electronic assemblies. However, soldering does not always equal soldering, because there are quite a lot of different soldering technologies. Accordingly, you have to distinguish between automated and manual soldering procedures. No matter which soldering process you analyse, all of them have one aspect in common: they produce airborne pollutants, which may have a negative impact on employees, plants and products as well.

ULT Canada Sales Incorporated

Stencil Options for Printing Solder Paste for .3 Mm CSP's and 01005 Chip Components

Technical Library | 2023-07-25 16:42:54.0

Printing solder paste for very small components like .3mm pitch CSP's and 01005 Chip Components is a challenge for the printing process when other larger components like RF shields, SMT Connectors, and large chip or resistor components are also present on the PCB. The smaller components require a stencil thickness typically of 3 mils (75u) to keep the Area Ratio greater than .55 for good paste transfer efficiency. The larger components require either more solder paste height or volume, thus a stencil thickness in the range of 4 to 5 mils (100 to 125u). This paper will explore two stencil solutions to solve this dilemma. The first is a "Two Print Stencil" option where the small component apertures are printed with a thin stencil and the larger components with a thicker stencil with relief pockets for the first print. Successful prints with Keep-Outs as small as 15 mils (400u) will be demonstrated. The second solution is a stencil technology that will provide good paste transfer efficiency for Area Ratio's below .5. In this case a thicker stencil can be utilized to print all components. Paste transfer results for several different stencil types including Laser-Cut Fine Grain stainless steel, Laser-Cut stainless steel with and w/o PTFE Teflon coating, AMTX E-FAB with and w/o PTFE coating for Area Ratios ranging from .4 up to .69.

Photo Stencil LLC

  1 2 Next

philips and laser searches for Companies, Equipment, Machines, Suppliers & Information

Selective Soldering Nozzles

High Precision Fluid Dispensers
Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

World's Best Reflow Oven Customizable for Unique Applications
thru hole soldering and selective soldering needs

Training online, at your facility, or at one of our worldwide training centers"
High Throughput Reflow Oven

Easily dispense fine pitch components with ±25µm positioning accuracy.