Technical Library: placement and problem and fuji (Page 1 of 4)

0201 Placement - Only With The Right Team and Tools!

Technical Library | 2003-09-17 02:59:58.0

It appears very logical that the successor of the 0402 size SMD would be the 0201. Curves showing the life-cycle of a body size, from introduction to most used to only for special cases, are very similar for the 1206, 0805, 0603 and 0402. So there is reason to expect that the same will happen with the 0201. Until now there is only little evidence for this, but most technologies come later than expected but faster than expected!

Assembléon

SMT Placement for ICs, Connectors and Odd-Shaped Components

Technical Library | 2009-11-18 23:37:52.0

Accurate component placement is a basic requirement for any pick and place machine. The first step towards accurate placement is accurate centering, or measurement of the component’s position on the placement head. One of the most widely used centering methods for ICs, connectors, and odd‐shaped components are a camera based system that measures the component position relative to a known point. Camera based centering systems include three main elements: lighting, camera, and software. Each of these elements are critical to obtaining an accurate measurement of the component and ultimately for accurate component placement on the PCB. As the old adage goes, the system is only as strong as its weakest link.

Juki Automation Systems

BTC and SMT Rework Challenges

Technical Library | 2019-05-22 21:24:05.0

voidless treatment Smaller components -> miniaturization (01005 capability) Large board handling -> dynamic preheating for large board repair Repeatable processes -> flux and paste application (Dip and Print), residual solder removal (scavenging), dispensing, multiple component handling, and traceability Operator support -> higher automation, software guidance

kurtz ersa Corporation

Inkjet-Printed and Paper-Based Electrochemical Sensors

Technical Library | 2018-07-03 12:27:02.0

It is becoming increasingly more important to provide a low-cost point-of-care diagnostic device with the ability to detect and monitor various biological and chemical compounds. Traditional laboratories can be time-consuming and very costly. Through the combination of well-established materials and fabrication methods, it is possible to produce devices that meet the needs of many patients, healthcare and medical professionals, and environmental specialists. Existing research has demonstrated that inkjet-printed and paper-based electrochemical sensors are suitable for this application due to advantages provided by the carefully selected materials and fabrication method. Inkjet printing provides a low cost fabrication method with incredible control over the material deposition process, while paper-based substrates enable pump-free microfluidic devices due to their natural wicking ability. Furthermore, electrochemical sensing is incredibly selective and provides accurate and repeatable quantitative results without expensive measurement equipment. By merging each of these favorable techniques and materials and continuing to innovate, the production of low-cost point-of-care sensors is certainly within reach

Louisiana State University

Taking the LED Pick and Place Challenge

Technical Library | 2014-09-25 18:16:47.0

For the past few years there has been a shift in the Lighting Industry that has carried over to the surface mount technology assembly line. What is this shift you may ask? Well it is the LED revolution. This revolution or change in lighting has some very promising results already in practice and many more companies looking to implement the LED technology into their product portfolio's. With a number of companies looking to expand their portfolio to include LED fixtures there has been an increase in the number of companies that have started their own SMT lines, as well as a significant number of contract manufacturers to meet this new industries demands (...)This presentation will discuss some issues in the pick and place process for LEDs and presents a method to troubleshoot and resolve these issues.

Cree, Inc.

Intel StrataFlash™ Memory Development and Implementation

Technical Library | 1999-05-07 10:13:38.0

This paper will review the device physics governing the operation of the industry standard ETOX™ flash memory cell and show how it is ideally suited for multiple bit per cell storage, through its storage of electrons on an electrically isolated floating gate and through its direct access to the memory cell.

Intel Corporation

Temperature Cycling and Fatigue in Electronics

Technical Library | 2020-01-01 17:06:52.0

The majority of electronic failures occur due to thermally induced stresses and strains caused by excessive differences in coefficients of thermal expansion (CTE) across materials.CTE mismatches occur in both 1st and 2nd level interconnects in electronics assemblies. 1st level interconnects connect the die to a substrate. This substrate can be underfilled so there are both global and local CTE mismatches to consider. 2nd level interconnects connect the substrate, or package, to the printed circuit board (PCB). This would be considered a "board level" CTE mismatch. Several stress and strain mitigation techniques exist including the use of conformal coating.

DfR Solutions

0201 and 01005 Adoption in Industry

Technical Library | 2011-02-03 17:58:46.0

First introduced in the year 2000, the 0201 package was sold in significant numbers in the electronics industry by 2003. According to some estimates, it currently accounts for approximately 20% of surface mounted component (SMC) demand worldwide1. This pu

DfR Solutions

Embedded Passive Technology

Technical Library | 2014-01-09 16:40:33.0

Embedded Passive Technology is a viable technology that has been reliably used in the defense and aerospace industry for over 20 years. Embedded Passive (Resistors and Capacitors) Technology have a great potential for high frequency and high density applications. It also provides better signal performance, reduced parasitic and cross talk. This paper summarizes the selection of resistor embedded materials, evaluations of resistive material (Phase 1) and duplication of a complex digital design (Phase 2). Phase 1 –resistive materials (Foil 25Ω/sq NiCr and 1kΩ/sq CrSiO) and resistive-Ply materials (25Ω/sq and 250Ω/sq NiP) were chosen for evaluation.

Honeywell International

Investigation of Cutting Quality and Mitigation Methods for Laser Depaneling of Printed Circuit Boards

Technical Library | 2019-09-11 23:33:04.0

There are numerous techniques to singulate printed circuit boards after assembly including break-out, routing, wheel cutting and now laser cutting. Lasers have several desirable advantages such as very narrow kerf widths as well as virtually no dust, no mechanical stress, visual pattern recognition and fast set-up changes. The very narrow kerf width resulting from laser ablation and the very tight tolerance of the cutting path placement allows for more usable space on the panel. However, the energy used in the laser cutting process can also create unwanted products on the cut walls as a result of the direct laser ablation. The question raised often is: What are these products, and how far can the creation of such products be mitigated through variation of the laser cutting process, laser parameters and material handling? This paper discusses the type and quantity of the products found on sidewalls of laser depaneled circuit boards and it quantifies the results through measurements of breakdown voltage, as well as electrical impedance. Further this paper discusses mitigation strategies to prevent or limit the amount of change in surface quality as a result of the laser cutting process. Depending on the final application of the circuit board it may prompt a need for proper specification of the expected results in terms of cut surface quality. This in turn will impact the placement of runs and components during layout. It will assist designers and engineers in defining these parameters sufficiently in order to have a predictable quality of the circuit boards after depaneling.

LPKF Laser & Electronics

  1 2 3 4 Next

placement and problem and fuji searches for Companies, Equipment, Machines, Suppliers & Information

Selective Conformal Coating System - GPD SimpleCoat

Easily dispense fine pitch components with ±25µm positioning accuracy.
NXT M3 Machine

Inspection mirrors for electronic rework and repair.
vision placer pnp creator

Best Reflow Oven
SMT feeders

PCB Assembly Supplies - ONLINE STORE
Green Monster Stencil Wiping Rolls