Technical Library: raise (Page 1 of 2)

Early Design Review of Boundary Scan in Enhancing Testability and Optimization of Test Strategy

Technical Library | 2018-08-01 11:25:59.0

With complexities of PCB design scaling and manufacturing processes adopting to environmentally friendly practices raise challenges in ensuring structural quality of PCBs. This makes it essential to have a good 'Design for Test' (DFT) to ensure a robust structural test. (...)During the course of the DFT review, can we realize a good test strategy for the PCBA. How can the test strategy of the PCBA be partitioned as to what portions of the design can be covered structurally and what is covered functionally, in a way that provides best diagnostics to discover faults

Keysight Technologies

Counterfeit Materials Prevention

Technical Library | 2022-10-04 16:54:38.0

Counterfeiting is growing in exponential proportions with respect to the types of: • Products being counterfeited • Industries affected • Potential consequences caused by counterfeits If this threat is not adequately addressed, counterfeit items have the potential to seriously compromise the safety and operational effectiveness of our products. The objective of this training is to raise awareness of: • The risks and impacts of counterfeit parts infiltrating the supply chain. • Best practices to eliminate or mitigate those risks • Lockheed Martin counterfeit prevention requirements for suppliers

Lockheed Martin Corporation

Tackling SMT Enemy Number One - Raising The Standard of Solder Paste Application

Technical Library | 2009-05-14 13:57:43.0

Is screen printing technology able to keep pace with rising quality demands and increasingly complex board layouts? Or, is new jet printing technology ready to fill the gap? A comparison study between the two methods reveals some interesting differences. Screen printers offer some possibilities for optimizing solder paste deposits, but optimization is far easier and quicker with the jet printer. At the same time, the ability to print individualized deposits on every single pcb pad may be the ultimate answer to the growing quality challenge.

Mycronic Technologies AB

Evaluating Soldering Irons for Lead Free Assembly -A Quantitative Approach

Technical Library | 2006-09-06 15:25:43.0

Transition to lead free solder stations in electronics packaging has raised issues regarding process, metallurgy and reliability m assemblies. In regards to soldering, lead has been used for thousands of years in a wide range of applications. Conventional eutectic or near eutectic tin-lead solder compositions have been used for virtually all soldering applications in electronics assembly for the last 50 years, In the electronics assembly process, a majority of commercial rework applications and some low density board assembly processes require hand soldering stations (...) This paper describes an attempt to quantify both qualitative and quantitative data that can aid in the evaluation of lead free soldering irons.

T.J. Watson School of Engineering and Applied Science

Electrostatic Theory of Metal Whiskers.

Technical Library | 2014-07-31 16:36:59.0

Metal whiskers often grow across leads of electric equipment and electronic package causing current leakage or short circuits and raising significant reliability issues. The nature of metal whiskers remains a mystery after several decades of research. Here, the existence of metal whiskers is attributed to the energy gain due to electrostatic polarization of metal filaments in the electric field. The field is induced by surface imperfections: contaminations, oxide states, grain boundaries, etc. A proposed theory provides closed form expressions and quantitative estimates for the whisker nucleation and growth rates, explains the range of whisker parameters and effects of external biasing, and predicts statistical distribution of their lengths.

University of Toledo

High Frequency DK and DF Test Methods Comparison High Density Packaging User Group (HDP) Project

Technical Library | 2016-03-24 17:37:09.0

Today's Electronic Industry is changing at a high pace. The root causes are manifold. So world population is growing up to eight billions and gives new challenges in terms of urbanization, mobility and connectivity. Consequently, there will raise up a lot of new business models for the electronic industry. Connectivity will take a large influence on our lives. Concepts like Industry 4.0, internet of things, M2M communication, smart homes or communication in or to cars are growing up. All these applications are based on the same demanding requirement – a high amount of data and increased data transfer rate. These arguments bring up large challenges to the Printed Circuit Board (PCB) design and manufacturing.This paper investigates the impact of different PCB manufacturing technologies and their relation to their high frequency behavior. In the course of the paper a brief overview of PCB manufacturing capabilities is be presented. Moreover, signal losses in terms of frequency, design, manufacturing processes, and substrate materials are investigated. The aim of this paper is, to develop a concept to use materials in combination with optimized PCB manufacturing processes, which allows a significant reduction of losses and increased signal quality.

Alcatel-Lucent

Partially-Activated Flux Residue Impacts on Electronic Assembly Reliabilities

Technical Library | 2016-12-29 15:37:51.0

The reliabilities of the flux residue of electronic assemblies and semiconductor packages are attracting more and more attention with the adoption of no-clean fluxes by majority of the industry. In recent years, the concern of "partially activated" flux residue and their influence on reliability have been significantly raised due to the miniaturization along with high density design trend, selective soldering process adoption, and the expanded use of pallets in wave soldering process. When flux residue becomes trapped under low stand-off devices, pallets or unsoldered areas (e.g. selective process), it may contain unevaporated solvent, "live" activators and metal complex intermediates with different chemical composition and concentration levels depending on the thermal profiles. These partially-activated residues can directly impact the corrosion, surface insulation and electrochemical migration of the final assembly. In this study, a few application tests were developed internally to understand this issue. Two traditional liquid flux and two newly developed fluxes were selected to build up the basic models. The preliminary results also provide a scientific approach to design highly reliable products with the goal to minimize the reliability risk for the complex PCB designs and assembly processes. This paper was originally published by SMTA in the Proceedings of SMTA International

Kester

What is the main function of hot air dry oven?

Technical Library | 2019-09-25 04:36:01.0

What is the main function of hot air dry oven? Drying ovens are devices used to remove moisture and other solvents from the items placed inside them through a forced convection process, collecting it elsewhere so that the object becomes dehydrated. A drying oven causes objects to dry out through evaporation. Drying ovens use convection heating,also called air forced, in which the object is heated through air currents. Water from the object escapes into the air, raising the humidity level and causing the semi-solid membranes inside the oven to absorb the water. The end result is that the oven removes water from the object being dried, leaving it dehydrated. Drying ovens contain a system for forcing convection currents to develop, usually either a fan or turbine, which aids in the heating and drying process by ensuring that the hot air circulates,many ovens are equipped with an adjustable ventilation system that allows the user to ensure that the system has an adequate air supply. For details,pls visit our website: https://climatechambers.com/articles&latestnews/what-is-the-main-function-of-hot-air-dry-oven.html

Symor Instrument Equipment Co.,Ltd

Surfaces of mixed formulation solder alloys at melting

Technical Library | 2022-10-31 17:25:37.0

Mixed formulation solder alloys refer to specific combinations of Sn-37Pb and SAC305 (96.5Sn–3.0Ag–0.5Cu). They present a solution for the interim period before Pb-free electronic assemblies are universally accepted. In this work, the surfaces of mixed formulation solder alloys have been studied by in situ and real-time Auger electron spectroscopy as a function of temperature as the alloys are raised above the melting point. With increasing temperature, there is a growing fraction of low-level, bulk contaminants that segregate to the alloy surfaces. In particular, the amount of surface C is nearly _50–60 at. % C at the melting point. The segregating impurities inhibit solderability by providing a blocking layer to reaction between the alloy and substrate. A similar phenomenon has been observed over a wide range of (SAC and non-SAC) alloys synthesized by a variety of techniques. That solder alloy surfaces at melting have a radically different composition from the bulk uncovers a key variable that helps to explain the wide variability in contact angles reported in previous studies of wetting and adhesion. VC 2011 American Vacuum Society. [DOI: 10.1116/1.3584821]

Auburn University

Investigation of Cutting Quality and Mitigation Methods for Laser Depaneling of Printed Circuit Boards

Technical Library | 2019-09-11 23:33:04.0

There are numerous techniques to singulate printed circuit boards after assembly including break-out, routing, wheel cutting and now laser cutting. Lasers have several desirable advantages such as very narrow kerf widths as well as virtually no dust, no mechanical stress, visual pattern recognition and fast set-up changes. The very narrow kerf width resulting from laser ablation and the very tight tolerance of the cutting path placement allows for more usable space on the panel. However, the energy used in the laser cutting process can also create unwanted products on the cut walls as a result of the direct laser ablation. The question raised often is: What are these products, and how far can the creation of such products be mitigated through variation of the laser cutting process, laser parameters and material handling? This paper discusses the type and quantity of the products found on sidewalls of laser depaneled circuit boards and it quantifies the results through measurements of breakdown voltage, as well as electrical impedance. Further this paper discusses mitigation strategies to prevent or limit the amount of change in surface quality as a result of the laser cutting process. Depending on the final application of the circuit board it may prompt a need for proper specification of the expected results in terms of cut surface quality. This in turn will impact the placement of runs and components during layout. It will assist designers and engineers in defining these parameters sufficiently in order to have a predictable quality of the circuit boards after depaneling.

LPKF Laser & Electronics

  1 2 Next

raise searches for Companies, Equipment, Machines, Suppliers & Information

Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

World's Best Reflow Oven Customizable for Unique Applications
Selective Soldering Nozzles

High Throughput Reflow Oven
Software for SMT

High Resolution Fast Speed Industrial Cameras.
SMT spare parts

SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...