Technical Library: riches (Page 1 of 1)

Equipment Impacts of Lead Free Wave Soldering

Technical Library | 2003-04-18 12:05:57.0

The popular tin (Sn) rich lead free solders are causing severe corrosion to many of the materials used in today's Wave Solder systems. Users are experiencing higher maintenance frequency and reduced life of wave solder machine components. This paper describes the effects of Sn rich solders in contact with various materials and discusses alternate methods to alleviate this problem.

Cookson Electronics

Intermetallic Growth in Tin-Rich Solders

Technical Library | 2017-06-13 17:14:59.0

For tin-rich solder alloys, 200 C (392 F) is an extreme temperature. Intermetallic growth in tin-copper systems is known to occur and is believed to bear a direct relationship to failure mechanisms. This study of morphological changes with time at elevated temperatures was made to determine growth rates of tin-copper intermetallics. Preferred growth directions, rates of thickening, and notable changes in morphology were observed.Each of four tin-base alloys was flowed on copper and exposed to temperatures between 100 C and 200 C for time periods of up to 32 days. Metallographic sections were taken and the intermetallics were examined. Intermetallic layer thickening is characterized by several distinct stages. The initial growth of side plates is extremely rapid and exaggerated. This is followed by retrogression (spheroidization) of the elongated peaks and by general thick-

General Electric

IPC Standards and Printed Electronics Monetization

Technical Library | 2013-05-23 17:41:21.0

Printed Electronics is considered by many international technologists to be a platform for manufacturing innovation. Its rich portfolio of advanced multi-functional nano-designed materials, scalable ambient processes, and high volume manufacturing technologies lends itself to offer an opportunity for sustained manufacturing innovation. The success of introducing a new manufacturing technology is strongly dependent on the ability to achieve high final product yields at current or reduced cost. In the past, standards have been the critical vehicles to enable manufacturing success... First published in the 2012 IPC APEX EXPO technical conference proceedings.

Printovate Technologies, Inc.

Whisker Growth In Tin Alloys On Glass-Epoxy Laminate Studied By Scanning ION Microscopy and Energy-Dispersive X-Ray Spectroscopy

Technical Library | 2013-08-22 14:28:58.0

Tin-rich solders are widely applied in the electronic industry in the majority of modern printed circuit boards (PCBs). Because the use of lead-tin solders has been banned in the European Union since 2006, the problem of the bridging of adjacent conductors due to tin whisker growth (limited before by the addition of Pb) has been reborn. In this study tin alloys soldered on glass-epoxy laminate (typically used for PCBs) are considered. Scanning ion microscopy with Focused Ion Beam (FIB) system and energy-dispersive X-ray spectroscopy (EDXS) were used to determine correlations between spatial non-uniformities of the glass-epoxy laminate, the distribution of intermetallic compounds and whisker growth.

The Institute of Electron Technology (ITE)

Dissolution in Service of the Copper Substrate of Solder Joints

Technical Library | 2019-06-20 00:09:49.0

It is well known that during service the layer of Cu6Sn5 intermetallic at the interface between the solder and a Cu substrate grows but the usual concern has been that if this layer gets too thick it will be the brittleness of this intermetallic that will compromise the reliability of the joint, particularly in impact loading. There is another level of concern when the Cu-rich Cu3Sn phase starts to develop at the Cu6Sn5/Cu interface and an imbalance in the diffusion of atomic species, Sn and Cu, across that interface results in the formation at the Cu3Sn/Cu interface of Kirkendall voids, which can also compromise reliability in impact loading. However, when, as is the case in some microelectronics, the copper substrate is thin in relation to the volume of solder in the joint an overriding concern is that all of the Cu will be consumed by reaction with Sn to form these intermetallics.This paper reports an investigation into the kinetics of the growth of the interfacial intermetallic, and the consequent reduction in the thickness of the Cu substrate in solder joints made with three alloys, Sn-3.0Ag-0.5Cu, Sn-0.7Cu-0.05Ni and Sn-1.5Bi-0.7Cu-0.05Ni.

Nihon Superior Co., Ltd.

DoD/EPA/DOE SERDP WP-2213: Novel Whisker Mitigating Composite Conformal Coat Assessment

Technical Library | 2023-02-13 19:14:03.0

Technology Focus: Develop and evaluate nanoparticle filled conformal coatings designed to provide long term whisker penetration resistance and coverage on tin rich metal surfaces prone to whisker growth in commercial lead-free electronics used in modern DoD systems. Research Objectives: Identify the fundamental mechanisms by which conformal coatings provide long-term tin whisker penetration resistance and inhibit nucleation/growth. Correlate mechanical properties and coverage thickness to whisker penetration resistance. Project Progress and Results: Functionalized nanosilica and non-functional nanoalumina enhanced polyurethane conformal coatings have shown improved spray coating coverage characteristics and crack resistance during thermal cycling fatigue testing. Lead-free assembly whisker mitigation validation testing is in process. Technology Transition: Current project partners provide coating materials to industry. SERDP test data will be considered during updates to the DoD adopted IPC standards for coating materials and coverage.

BAE SYSTEMS

Profiled Squeegee Blade: Rewrites the Rules for Angle of Attack

Technical Library | 2014-12-24 19:22:52.0

For centuries, the squeegee blade has been used throughout many applications for depositing viscous materials through screens and stencils to transfer images on to substrates, from cloth material to electronic circuit boards. One area of blade printing mechanics that have been reviewed many times is the angle of attack of the blade. Typically it has been tested from 45 degrees to 60 degrees to optimize the printing quality and efficiency. However, this typically ends up as a compromise, from fill characteristics (45 degrees) to print definition (60 degrees). This paper will present the revolutionary performance of the profiled squeegee blade, which has recently been developed to create a virtual multi angle of attack for unsurpassed process control for all types of stencil printing processes.

Lu-Con Technologies

Waste-Printed Circuit Board Recycling: Focusing on Preparing Polymer Composites and Geopolymers

Technical Library | 2021-06-07 19:03:05.0

The waste from end-of-life electrical and electronic equipment has become the fastest growing waste problem in the world. The difficult-to-treat waste-printed circuit boards (WPCBs), which are nearly 3−6 wt % of the total electronic waste, generate great environmental concern nowadays. For WPCB treatment and recycling, the mechanical−physical method has turned out to be more technologically and economically feasible. In this work, the mechanical−physical treatment and recycling technologies for WPCBs were investigated, and future research was directed as well. Removing electric and electronic components(EECs) from WPCBs is critical for their crushing and metal recovery; however, environmentally friendly and high-efficiency removal techniques need be developed. Concentrated metals rich in Cu, Al, Au, Pb, and Sn recovered from WPCBs need be further refined to add to their economic values. The low value added nonmetallic fraction of waste-printed circuit boards (NMF-WPCBs) accounts for approximately 60 wt % of the WPCBs. From the perspective of environmental management, a zero-waste approach to recycling them should be developed to gain values. Preparing polymer composites and geopolymers offers many advantages and has potential applications in various fields, especially as construction and building materials. However, the mechanical and thermal properties of NMF-WPCBs composites should be further improved for preparing polymer composites. Surface modification or filler blending could be applied to improve the interfacial comparability between NMF-WPCBs and the polymer matrix. The NMFWPCBs shows potential in preparing cement mortar and geological polymers, but the environmental safety resulting from metals needs to be taken into account. This study will provide a significant reference for the industrial recycling of NMF-WPCBs

Zhejiang University

Developments in Electroless Copper Processes to Improve Performance in amSAP Mobile Applications

Technical Library | 2020-09-02 22:02:13.0

With the adoption of Wafer Level Packages (WLP) in the latest generation mobile handsets, the Printed Circuit Board (PCB) industry has also seen the initial steps of High Density Interconnect (HDI) products migrating away from the current subtractive processes towards a more technically adept technique, based on an advanced modified Semi Additive Process (amSAP). This pattern plate process enables line and space features in the region of 20um to be produced, in combination with fully filled, laser formed microvias. However, in order to achieve these process demands, a step change in the performance of the chemical processes used for metallization of the microvia is essential. In the electroless Copper process, the critical activator step often risks cross contamination by the preceding chemistries. Such events can lead to uncontrolled buildup of Palladium rich residues on the panel surface, which can subsequently inhibit etching and lead to short circuits between the final traces. In addition, with more demands being placed on the microvia, the need for a high uniformity Copper layer has become paramount, unfortunately, as microvia shape is often far from ideal, the deposition or "throw" characteristics of the Copper bath itself are also of critical importance. This "high throwing power" is influential elsewhere in the amSAP technique, as it leads to a thinner surface Copper layer, which aids the etching process and enables the ultra-fine features being demanded by today's high end PCB applications. This paper discusses the performance of an electroless Copper plating process that has been developed to satisfy the needs of challenging amSAP applications. Through the use of a radical predip chemistry, the formation, build up and deposition of uncontrolled Pd residues arising from activator contamination has been virtually eradicated. With the adoption of a high throwing power Copper bath, sub 30um features are enabled and microvia coverage is shown to be greatly improved, even in complex via shapes which would otherwise suffer from uneven coverage and risk premature failure in service. Through a mixture of development and production data, this paper aims to highlight the benefits and robust performance of the new electroless Copper process for amSAP applications

Atotech

  1  

riches searches for Companies, Equipment, Machines, Suppliers & Information