Technical Library: rolling (Page 1 of 1)

3D Printed Electronics for Printed Circuit Structures

Technical Library | 2018-10-10 21:26:52.0

Printed electronics is a familiar term that is taking on more meaning as the technology matures. Flexible electronics is sometimes referred to as a subset of this and the printing approach is one of the enabling factors for roll to roll processes. Printed electronics is improving in performance and has many applications that compete directly with printed circuit boards. The advantage of roll to roll is the speed of manufacturing, the large areas possible, and a reduction in costs. As this technology continues to mature, it is also merging with the high profile 3D printing. (...)This paper will show working demonstrations of printed circuit structures, the obstacles, and the potential future of 3D printed electronics.

nScrypt Inc.

Advanced Technologies for Industry – Product Watch Flexible and printed electronics

Technical Library | 2021-07-13 19:51:10.0

Flexible electronics refers to a class of lightweight, flexible and electronic sensing components and electronic devices built on stretchable substrates1 that are used (and can be used) for a broad set of products and applications such as displays and sensors. The most prominent characteristic is that they can bend in contrast to electronic systems built in rigid materials. They are manufactured on flexible plastic substrates, such as polyamide, PEEK2 or transparent conductive polyester films3, or other materials such as paper, textile, or thin glass. The term flexible also refers to the roll-to-roll manufacturing process.

European Commission - Executive Agency for Small and Medium-sized Enterprises (EASME)

SMT Under Stencil Wiper Rolls

Technical Library | 2019-06-03 21:07:34.0

The objective of this White Paper is to provide users of the above products in the electronics industry a clear understanding of the different types of stencil cleaning paper/fabrics that are currently available. Fine pitch applications are more the norm now and so the performance of stencil cleaning rolls is more critical than ever before. This White Paper will give solder paste stencil printing engineers and purchasing professionals an insight into the main products on the market, thereby enabling them to make informed decisions.

Swiftmode Malaysia (Penang) Sdn Bhd

Factors Affecting the Adhesion of Thin Film Copper on Polyimide

Technical Library | 2017-11-22 12:38:51.0

The use of copper foils laminated to polyimide (PI) as flexible printed circuit board precursor is a standard practice in the PCB industry. We have previously described[1] an approach to very thin copper laminates of coating uniform layers of nano copper inks and converting them into conductive foils via photonic sintering with a multibulb conveyor system, which is consistent with roll-to-roll manufacturing. The copper thickness of these foils can be augmented by electroplating. Very thin copper layers enable etching fine lines in the flexible circuit. These films must adhere tenaciously to the polyimide substrate.In this paper, we investigate the factors which improve and inhibit adhesion. It was found that the ink composition, photonic sintering conditions, substrate pretreatment, and the inclusion of layers (metal and organic) intermediate between the copper and the polyimide are important.

Intrinsiq Materials Inc.

Graphene electronic fibres with touch-sensing and light emitting functionalities for smart textiles

Technical Library | 2019-08-29 13:04:55.0

The true integration of electronics into textiles requires the fabrication of devices directly on the fibre itself using high-performance materials that allow seamless incorporation into fabrics. Woven electronics and opto-electronics, attained by intertwined fibres with complementary functions are the emerging and most ambitious technological and scientific frontier. Here we demonstrate graphene-enabled functional devices directly fabricated on textile fibres and attained by weaving graphene electronic fibres in a fabric. Capacitive touch-sensors and light-emitting devices were produced using a roll-to-roll-compatible patterning technique, opening new avenues for woven textile electronics. Finally, the demonstration of fabric-enabled pixels for displays and position sensitive functions is a gateway for novel electronic skin, wearable electronic and smart textile applications.

University of Exeter, College of Engineering, Mathematics and Physical Sciences

Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses

Technical Library | 2022-01-12 19:17:37.0

Occasionally, mature industries are turned upside down by innovations. The years of research on robotics and multiagent systems are coming together to provide just such a disruption to the material-handling industry. While autonomous guided vehicles (AGVs) have been used to move material within warehouses since the 1950s, they have been used primarily to transport very large, very heavy objects like rolls of uncut paper or engine blocks.

Association for the Advancement of Artificial Intelligence

Reliable Young's Modulus Value of High Flexible, Treated Rolled Copper Foils Measured by Resonance Method

Technical Library | 2018-08-15 17:27:28.0

Smartphones and tablets require very high flexibility and severe bending performance ability of the flexible printed circuits (FPCs) to fit into their thinner and smaller body designs. In these FPCs, the extraordinary highly flexible, treated rolled-annealed (RA) copper foils have recently used instead of regular RA foil and electro deposited foils. It is very important to measure the Young's moduli of these foils predicting the mechanical properties of FPCs such as capabilities of fatigue endurance, folding, and so on. Even though the manufacturers use IPC TM-650 2.4.18.3 test method for measuring Young's modulus of copper foils over many years, where Young's modulus is calculated from the stress–strain (S–S) curve, it is quite difficult to obtain the accurate Young's modulus of metal foils by this test method.

JX Nippon Mining & Metals

Selective Reflow Rework Process

Technical Library | 2016-08-18 15:38:09.0

The Selective Reflow Rework Process is an approach to improving the high volume rework process, increasing process capabilities and process repeatability by using a standard reflow oven of 12 zones, pick and place machinery, semi-automated printing gear and Solder Paste Inspection (SPI) implementations. This approach was able to reduce the amount of rework equipment by more than half. Our human resource requirements (indirect and direct labor) were cut by more than 50% and our rolled throughput yield increased from 68.9% to 84.14%. The Selective Reflow Rework Process is less reliant upon operators and has become a repeatable, stable rework process.

Flex (Flextronics International)

  1  

rolling searches for Companies, Equipment, Machines, Suppliers & Information