Technical Library: setup (Page 1 of 2)

Stencil Printing 008004/0201 Aperture Components

Technical Library | 2020-04-14 15:56:32.0

This paper will focus on the application requirements of solder printing small aperture designs, concentrating on 008004 (inch) / 0201 (metric) size components, and the results of a design of experiment printing these challenging apertures. As Moore's law continues to be applied to component miniaturization, the next installment of reduced packaging has arrived in the form of the 008004/0201 for resistors and capacitors. Component size roughly the size of a grain of sand presents specific challenges to the solder printing process. To address these challenges, each aspect of the printing process will need be examined. This includes essential machine requirements, including correct squeegee blades, tooling support, and calibrations, to meet the demanding specifications. The correct match and design of materials will be addressed, focusing on the stencil and substrate design along with solder paste and cleaning solvent requirements. A design of experiment will be reviewed that applies the machine and materials discussed, including the printer and Solder Paste Inspection (SPI) setup and the specific machine parameters used. The results of these DOE's will then be closely examined.

ITW EAE

How to Choose the Right PCB Coating Machine Line

Technical Library | 2023-11-07 09:36:38.0

How to Choose the Right PCB Coating Machine Line Selecting the ideal equipment for your PCB coating line can be a complex task. In this article, we will guide you through the critical components of a standard PCB coating machine line and their solutions to common challenges. We'll delve into the line's composition, including the elevator, transfer station, coating machine, inspection station, curing oven, and their interconnectedness through a return conveyor. Let's explore each element and understand its role. Components of a PCB Coating Machine Line: Elevator: The PCB coating process starts with an elevator, efficiently transporting PCB boards to the next stage. Transfer Station: After the elevator, boards are conveyed to a transfer station, preparing them for the coating process. Coating Machine: The heart of the PCB coating line is the coating machine. We offer a range of coating machines, including I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. Inspection Conveyor: Following the coating process, the boards move to an inspection station. The second transfer station is equipped with LED lights and a blue glass cover, enabling operators to closely inspect the coating quality. This feature is vital for ensuring consistent, dust-free coatings. Curing Oven: For UV-curable adhesives, we provide a UV curing oven to effectively solidify the adhesive. Return Conveyor: Beneath the entire line runs a return conveyor, connected to the elevator. This conveyor system efficiently returns PCBs from the last elevator to the first one, reducing manual handling and streamlining operations. The Advantages of the PCB Coating Line Design: 1. Easy Accessibility: The operator's station is strategically located beside the coating machine, ensuring easy access for setup and adjustments. 2. Enhanced Efficiency: The integrated return conveyor eliminates the need for manual transport, optimizing workflow. 3. Quality Control: The inspection station with the blue glass cover enables operators to inspect coatings for quality and cleanliness. 4. Dust Prevention: The blue glass cover also serves as a barrier to prevent dust contamination on freshly coated PCBs. Selecting the right PCB coating machine line is essential for achieving quality and efficiency in your operations. Our meticulously designed equipment line, along with its well-engineered components, can help you attain superior results. If you have further questions or need assistance in choosing the best solution for your specific requirements, please do not hesitate to contact us. We are committed to providing solutions that meet your needs and exceed your expectations.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Choosing the Right Model I.C.T SMT Coating Machine

Technical Library | 2023-12-01 11:08:12.0

Choosing the Right Model I.C.T SMT Coating Machine In the realm of SMT Coating Machine, I.C.T offers an extensive array of advanced models tailored to diverse production needs. The choice of the right machine significantly influences the efficiency and precision of your conformal coating process. This article will provide an in-depth exploration of I.C.T's PCB conformal coating spray machine models, specifically the I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650, assisting you in making an informed decision aligned with your specific requirements. I.C.T PCB Conformal Coating Spray Machines Overview I.C.T, renowned for its commitment to innovation, quality, and safety, ensures all models hold CE certification. Let's delve into the key distinctions between these models and the essential factors to consider when selecting the ideal machine for your needs. I.C.T-T550: Precision in Simplicity The I.C.T-T550 SMT Coating Machine model features two critical valves: the atomization valve and the precision valve. If you're interested in exploring a variety of coating valves, simply click here for more information. Ideal for applications where fixed valves suffice, the I.C.T-T550, lacking rotation or tilting capabilities, ensures consistent and reliable results for straightforward conformal coating requirements. I.C.T-T550U: Unleash Flexibility For those requiring more versatility, the I.C.T-T550U SMT Coating Machine model is designed to meet your needs. The addition of a rotating U-axis empowers the valves to rotate a full 360 degrees and tilt up to 35 degrees, enabling precise coating in challenging, intricate areas. The I.C.T-T550U's flexibility makes it an excellent choice for a wide range of applications. I.C.T-T600: Doubling Efficiency Closely resembling the I.C.T-T550 SMT Coating Machine, the I.C.T-T600 boasts a unique feature – equipped with two atomization valves. This dual-valve setup enables simultaneous coating of two PCBs, effectively doubling production efficiency. Ideal for applications prioritizing speed and efficiency, the I.C.T-T600 SMT Coating Machine streamlines the coating process. I.C.T-T650: Versatility Redefined In cases requiring different valves for comprehensive coating, the I.C.T-T650 SMT Coating Machine is the solution. This model features two atomization valves and two precision valves, offering exceptional flexibility for diverse conformal coating applications. The I.C.T-T650 SMT Coating Machine ensures precise and reliable results for even the most complex coating needs. Conclusion: PCB Conformal Coating Spray Machines Selecting the right I.C.T PCB conformal coating spray machine is crucial for enhancing the efficiency and effectiveness of your production process. Consider factors such as the size, complexity, and coating requirements of your PCBAs. Rest assured, I.C.T's unwavering commitment to innovation, quality, and safety guarantees the perfect solution to elevate your conformal coating endeavors. If you need further guidance or wish to tap into the expertise of I.C.T professional engineers for designing a customized coating production line, do not hesitate to reach out. We are here to help you achieve optimal results while meeting European safety standards. If uncertain about whether your product requires a PCB dispensing machine or coating machine, feel free to reach out directly or click here to read our comprehensive guide for further insights: Differences Between Coating & Dispensing.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Stereo Vision Based Automated Solder Ball Height Detection

Technical Library | 2015-04-16 16:11:43.0

Solder ball height inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height inspection tools such as laser profiling, fringe projection and confocal microscopy are expensive, require complicated setup and are slow, which makes them difficult to use in a real-time manufacturing setting. Therefore, a reliable, in-line ball height measurement method is needed for inspecting units undergoing assembly. (...) In this paper, an automatic, stereo vision based, in-line ball height inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement.

Intel Corporation

Recommendations for Board Assembly of Infineon Thin Small Discrete Packages without Leads

Technical Library | 2021-04-01 14:36:51.0

This document provides information about the Surface Mount Technology (SMT) board assembly of Infineon Thin Small Non-leaded Packages (TSNP). The specific dimensions of the leadframe based inner setup depend on the size of the chip and the type of bonding. The field of application ranges from linear voltage regulators for weight-limited applications such as cellular phones and digital cameras to linear voltage regulators for the automotive sector.

Infineon Technologies AG

Ready to Start Measuring PCB Warpage during Reflow? Why and How to Use the New IPC-9641 Standard

Technical Library | 2014-08-19 15:39:13.0

Understanding warpage of package attach locations on PCBs under reflow temperature conditions is critical in surface mount technology. A new industry standard, IPC 9641, addresses this topic directly for the first time as an international standard.This paper begins by summarizing the sections of the IPC 9641 standard, including, measurement equipment selection, test setup and methodology, and accuracy verification. The paper goes further to discuss practical implementation of the IPC 9641 standards. Key advantages and disadvantages between available warpage measurement methods are highlighted. Choosing the correct measurement technique depends on requirements for warpage resolution, data density, measurement volume, and data correlation. From industry experience, best practice recommendations are made on warpage management of PCB land areas, covering how to setup, run, analyze, and report on local area PCB warpage.The release of IPC 9641 shows that flatness over temperature of the package land area on the PCB is critical to the SMT industry. Furthermore, compatibility of shapes between attaching surfaces in SMT, like a package and PCB, will be critical to product yield and quality in years to come.

Akrometrix

Fine Tuning The Stencil Manufacturing Process and Other Stencil Printing Experiments

Technical Library | 2013-11-21 12:01:11.0

Previous experimentation on a highly miniaturized and densely populated SMT assembly revealed the optimum stencil alloy and flux-repellent coating for its stencil printing process. Production implementation of the materials that were identified in the study resulted in approximately 5% print yield improvement across all assemblies throughout the operation, validating the results of the initial tests. A new set of studies was launched to focus on the materials themselves, with the purpose of optimizing their performance on the assembly line (...) Results of the prior tests are reviewed, and the new test vehicle, experimental setup and results are presented and discussed.

Shea Engineering Services

Advanced modelling technique achieves near to zero set up time and minimal tuning

Technical Library | 2015-04-29 03:29:56.0

Statistical Appearance Modelling technology enables an AOI system to “learn real world variation” based on operator interaction with inspection task results. This provides an accurate statistical description of normal variation in a product. With modelling technology, the user does not have to anticipate potential defects as the system will “flag” anything outside the “normal production range”. And, since the system is programmed with real production variation, it is sensitive to small subtle changes enabling reliable defect detection. Autonomous prediction of process variation enables an AOI system to be set up from a single PCB with production-ready performance. Setup time can be

CyberOptics Corporation

A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry

Technical Library | 2022-06-27 16:50:26.0

Electronics industry is one of the fastest evolving, innovative, and most competitive industries. In order to meet the high consumption demands on electronics components, quality standards of the products must be well-maintained. Automatic optical inspection (AOI) is one of the non-destructive techniques used in quality inspection of various products. This technique is considered robust and can replace human inspectors who are subjected to dull and fatigue in performing inspection tasks. A fully automated optical inspection system consists of hardware and software setups. Hardware setup include image sensor and illumination settings and is responsible to acquire the digital image, while the software part implements an inspection algorithm to extract the features of the acquired images and classify them into defected and non-defected based on the user requirements. A sorting mechanism can be used to separate the defective products from the good ones. This article provides a comprehensive review of the various AOI systems used in electronics, micro-electronics, and opto-electronics industries. In this review the defects of the commonly inspected electronic components, such as semiconductor wafers, flat panel displays, printed circuit boards and light emitting diodes, are first explained. Hardware setups used in acquiring images are then discussed in terms of the camera and lighting source selection and configuration. The inspection algorithms used for detecting the defects in the electronic components are discussed in terms of the preprocessing, feature extraction and classification tools used for this purpose. Recent articles that used deep learning algorithms are also reviewed. The article concludes by highlighting the current trends and possible future research directions.

Institute of Electrical and Electronics Engineers (IEEE)

Printed Circuit Board Assembly & Choosing a Vendor

Technical Library | 2019-10-24 06:29:59.0

Making your novel electronic item design ready for mass fabrication and printed circuit board assembly consists of a lot of steps as well as risks. I will provide a few recommendations about how to neglect pricey errors and how to reduce the time to promote your novel item designs. You can hire printed circuit board assembly services for this. As soon as you have accomplished your product as well as printed circuit board design, you wish to get started developing prototypes prior to you commit to big fabrication volume. A lot of design software packages, for instance, PCB layout design software, as well as an industrial design software program, possess simulation potentials incorporated. Carrying out a simulation facilitates curtailing numerous design mistakes prior to the first prototype is developed. In case you are developing an intrusive item, you might desire to think about a modular design wherein all of the chief functionalities are situated in individual modules. All through your testing, you could then swap modules that don’t cater to the design limits. Spinning individual modules would be swifter and more cost-effective in comparison to spinning a complete design. Counting on the design intricacy, you can mull over manually mounting printed circuit board elements to bank dollars. Nonetheless, for medium to big intricacy this procedure likely to be very time taking, typically in case you wish to create numerous prototypes. Hence it makes sense thinking about a contract manufacturer for the assembly. Whilst running miniature quantity fabrication runs, the fabrication setup expenditure will usually control the by and large prototype constructs expenditure. Whilst seeking a subcontractor, it is finest to choose a vendor that focuses on prototype builds to reduce the cost. Prototype printed circuit board fabricators characteristically join the circuit boards of a number of clients which efficiently shares the setup expenditure in the midst of some customers. The disadvantage is that you would characteristically only be able to want among numerous standard printed circuit board material thicknesses as well as sizes. Apart from choosing a supplier with low setup expenditure, choosing a firm that would moreover be capable to manage your whole fabrication runs curtails mistakes because switching fabricators have the chance of errors owing to a specific supplier interpreting fabrication design data in a different way. This manner your design is already translated into the particular machine data that implies little or no setup expenditure for your final fabrication. A few PCB manufacturers also provide printed circuit board design services that are awesome plus if you do not possess experience with the design. Moreover, these vendors would be capable to help you in case there are issues with your design folders and be capable to detect issues prior to the fabrication.

Optima Technology Associates, Inc.

  1 2 Next

setup searches for Companies, Equipment, Machines, Suppliers & Information

Pillarhouse USA for Selective Soldering Needs

High Throughput Reflow Oven
One stop service for all SMT and PCB needs

Training online, at your facility, or at one of our worldwide training centers"
Electronics Equipment Consignment

World's Best Reflow Oven Customizable for Unique Applications
Voidless Reflow Soldering

High Resolution Fast Speed Industrial Cameras.
pressure curing ovens

Benchtop Fluid Dispenser