Technical Library: transition temperature gp0-2 (Page 1 of 1)

Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints

Technical Library | 2014-06-19 18:13:23.0

For high-density electronic packaging,the application of flip-chip solder joints has been well received in the microelectronics industry. High-lead(Pb) solders such as Sn5Pb95 are presently granted immunity from the RoHS requirements for their use in high-end flip-chip devices, especially in military applications. In flip-chip technology for consumer electronic products, organic substrates have replaced ceramic substrates due to the demand for less weight and low cost. However, the liquidus temperatures of high-Pb solders are over 300°C which would damage organic substrates during reflow because of the low glass transition temperature. To overcome this difficulty, the composite solder approach was developed...

National Chiao Tung University

Enhancing Mechanical Shock Performance Using Edgebond Technology

Technical Library | 2014-06-26 16:43:12.0

Edgebond adhesives have been widely used by the industry for improving the shock performance of area array packages. Most of the studies focus on the impact of material properties, such as coefficient of thermal expansion (CTE) and glass transition temperature (Tg), on reliability at room temperature. However, the operating temperature of a component on the printed circuit board bonded with edgebond adhesive can be close to or exceed Tg of the adhesive, where the material properties may be very different than at room temperature.

Cisco Systems, Inc.

A Study On Process, Strength And Microstructure Analysis Of Low Temperature SnBi Containing Solder Pastes Mixed With Lead-Free Solder Balls

Technical Library | 2021-08-25 16:34:37.0

As the traditional eutectic SnPb solder alloy has been outlawed, the electronic industry has almost completely transitioned to the lead-free solder alloys. The conventional SAC305 solder alloy used in lead-free electronic assembly has a high melting and processing temperature with a typical peak reflow temperature of 245ºC which is almost 30ºC higher than traditional eutectic SnPb reflow profile. Some of the drawbacks of this high melting and processing temperatures are yield loss due to component warpage which has an impact on solder joint formation like bridging, open defects, head on pillow.

Rochester Institute of Technology

Effects of Tg and CTE on Semiconductor Encapsulants

Technical Library | 1999-07-21 08:49:49.0

As the role of direct-chip-attachment increases in the electronics industry, the reliability and performance of COB packaging materials becomes an increasing concern. Although many factors influence component reliability, the biggest determinants of performance are often the glass transition temperature (Tg) and the coefficient of thermal expansion (CTE) of the encapsulant or underfill. This paper discusses exactly what these properties are, how they are measured, and why they are important to device-reliability.

Henkel Electronic Materials

Coatings and Pottings: A Critical Update

Technical Library | 2021-08-11 01:00:37.0

Conformal coatings and potting materials continue to create issues for the electronics industry. This webinar will dig deeper into the failure modes of these materials, specifically issues with Coefficient of Thermal Expansion (CTE), delamination, cracking, de-wetting, pinholes/bubbles and orange peel issues with conformal coatings and what mitigation techniques are available. Similarly, this webinar will look at the failure modes of potting materials, (e.g Glass Transition Temperature (Tg), PCB warpage, the effects of improper curing and potential methods for correcting these situations.

DfR Solutions

How Mitigation Techniques Affect Reliability Results for BGAs

Technical Library | 2016-11-17 14:58:02.0

Since 2006 RoHS requirements have required lead free solders to take the place of tin-lead solders in electronics. The problem is that in some environments the lead free solders are less reliable than the older tin-lead solders. One of the ways to solve this problem is to corner stake, edge bond or underfill the components. When considering what mitigation technique and material to use, the operating conditions must be characterized. The temperature range is important when selecting a material to use since the glass transition temperature (Tg) and coefficient of thermal expansion (CTE) are important properties. If improperly chosen, the mitigation material can cause more failures than an unmitigated component.

DfR Solutions

Moisture Effect on Properties of Out-of-Autoclave Laminates with Different Void Content

Technical Library | 2020-12-16 18:38:49.0

Fabrication of large structures using out-of-autoclave prepreg materials will lead to a great amount of savings in manufacturing costs. In the out-of-autoclave processing method, the presence of voids inside the laminate has been an issue due to the lack of high pressure during manufacturing. This study aims primarily to observe the moisture absorption response of composite samples containing different levels of void. By changing the vacuum level inside the bag during the manufacturing process, three different unidirectional laminates at three levels of void have been manufactured. After immersing the samples in warm water at 60°C for about one year, the moisture absorption level was monitored and then diffusion coefficients were calculated using Fick's law. Results show that the moisture absorption coefficient changes by %8 within the experimental range of void contents. The mechanical behaviour of these laminates has been studied at four different moisture levels by performing dynamic mechanical analysis (DMA) and short beam shear tests. Empirical results indicate that, in general, interlaminar shear strength and glass transition temperature decrease by moisture build-up inside the samples. DiBenedetto equation is proposed to make a correlation between the moisture content and glass transition temperature.

Concordia University

Stencil Design for Lead-Free SMT Assembly

Technical Library | 2018-03-05 11:17:31.0

In order to comply with RoHS and WEEE directives, many circuit assemblers are transitioning some or all of their soldering processes from tin-lead to lead-free within the upcoming year. There are no drop-in replacement alloys for tin-lead solder, which is driving a fundamental technology change. This change is forcing manufacturers to take a closer look at everything associated with the assembly process: board and component materials, logistics and materials management, solder alloys and processing chemistries, and even soldering methods. Do not expect a dramatic change in soldering behavior when moving to lead-free solders. The melting points of the alloys are higher, but at molten temperatures the different alloys show similar behaviors in a number of respects. Expect subtler changes, especially near the edges of a process window that is assumed based on tin-lead experience rather than defined through lead-free experimentation. These small changes, many of them yet to be identified and understood, will manifest themselves with lower assembly yields. The key to keeping yields up during the transition to lead-free is quickly learning what and where the subtle distinctions are, and tuning the process to accommodate them.

Cookson Electronics

Going Lead Free With Vapor Phase Soldering - Lead Free Is Still a Challenge For Major Industries.

Technical Library | 2014-01-30 18:08:04.0

As of today, the electronic industry is aware of the requirements for their products to be lead free. All components are typically available in lead free quality. This comprises packages like BGAs with BGA solder balls to PCB board finishes like HASL. The suppliers are providing everything that is needed. It is harder to get the old tin leaded (SnPb) components for new applications today, than lead free ones. So why has not everybody changed over fully yet and how can the challenges be overcome? A big concern in this transition process is reflow soldering. The process temperatures for lead free applications became much higher. Related with this is more stress for all the components. It affects the quality and reliability of the electronic units and products...

IBL - Löttechnik GmbH

Controlling Moisture in Printed Circuit Boards

Technical Library | 2019-05-01 23:18:27.0

Moisture can accelerate various failure mechanisms in printed circuit board assemblies. Moisture can be initially present in the epoxy glass prepreg, absorbed during the wet processes in printed circuit board manufacturing, or diffuse into the printed circuit board during storage. Moisture can reside in the resin, resin/glass interfaces, and micro-cracks or voids due to defects. Higher reflow temperatures associated with lead-free processing increase the vapor pressure, which can lead to higher amounts of moisture uptake compared to eutectic tin-lead reflow processes. In addition to cohesive or adhesive failures within the printed circuit board that lead to cracking and delamination, moisture can also lead to the creation of low impedance paths due to metal migration, interfacial degradation resulting in conductive filament formation, and changes in dimensional stability. Studies have shown that moisture can also reduce the glass-transition temperature and increase the dielectric constant, leading to a reduction in circuit switching speeds and an increase in propagation delay times. This paper provides an overview of printed circuit board fabrication, followed by a brief discussion of moisture diffusion processes, governing models, and dependent variables. We then present guidelines for printed circuit board handling and storage during various stages of production and fabrication so as to mitigate moisture-induced failures.

CALCE Center for Advanced Life Cycle Engineering

  1  

transition temperature gp0-2 searches for Companies, Equipment, Machines, Suppliers & Information

Pillarhouse USA for Selective Soldering Needs

High Precision Fluid Dispensers
Pillarhouse USA for handload Selective Soldering Needs

Wave Soldering 101 Training Course
Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications