Technical Library: uv curing oven (Page 1 of 2)

I.C.T UV Curing Oven - Rapid and Reliable Curing Solutions

Technical Library | 2023-09-15 09:50:38.0

Discover the power of I.C.T UV Curing Oven. Achieve quick and dependable curing for your applications. Enhance efficiency and quality with our UV curing solutions.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

How to Choose the Right PCB Coating Machine Line

Technical Library | 2023-11-07 09:36:38.0

How to Choose the Right PCB Coating Machine Line Selecting the ideal equipment for your PCB coating line can be a complex task. In this article, we will guide you through the critical components of a standard PCB coating machine line and their solutions to common challenges. We'll delve into the line's composition, including the elevator, transfer station, coating machine, inspection station, curing oven, and their interconnectedness through a return conveyor. Let's explore each element and understand its role. Components of a PCB Coating Machine Line: Elevator: The PCB coating process starts with an elevator, efficiently transporting PCB boards to the next stage. Transfer Station: After the elevator, boards are conveyed to a transfer station, preparing them for the coating process. Coating Machine: The heart of the PCB coating line is the coating machine. We offer a range of coating machines, including I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. Inspection Conveyor: Following the coating process, the boards move to an inspection station. The second transfer station is equipped with LED lights and a blue glass cover, enabling operators to closely inspect the coating quality. This feature is vital for ensuring consistent, dust-free coatings. Curing Oven: For UV-curable adhesives, we provide a UV curing oven to effectively solidify the adhesive. Return Conveyor: Beneath the entire line runs a return conveyor, connected to the elevator. This conveyor system efficiently returns PCBs from the last elevator to the first one, reducing manual handling and streamlining operations. The Advantages of the PCB Coating Line Design: 1. Easy Accessibility: The operator's station is strategically located beside the coating machine, ensuring easy access for setup and adjustments. 2. Enhanced Efficiency: The integrated return conveyor eliminates the need for manual transport, optimizing workflow. 3. Quality Control: The inspection station with the blue glass cover enables operators to inspect coatings for quality and cleanliness. 4. Dust Prevention: The blue glass cover also serves as a barrier to prevent dust contamination on freshly coated PCBs. Selecting the right PCB coating machine line is essential for achieving quality and efficiency in your operations. Our meticulously designed equipment line, along with its well-engineered components, can help you attain superior results. If you have further questions or need assistance in choosing the best solution for your specific requirements, please do not hesitate to contact us. We are committed to providing solutions that meet your needs and exceed your expectations.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA

Technical Library | 2023-11-09 08:53:45.0

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

I.C.T IR Curing Oven Introduction - Efficient PCB Assembly

Technical Library | 2023-09-15 09:49:47.0

Explore our I.C.T IR Curing Oven Introduction to optimize your PCB assembly process. Learn how our cutting-edge ovens can improve efficiency and reliability in curing processes.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

How Detrimental Production Concerns Related to Solder Mask Residues Can Be Countered by Simple Operational Adaptations

Technical Library | 2019-09-19 00:28:48.0

The symbiotic relationship between solder masks and selective finishes is not new. The soldermask application is one of the key considerations to ensure a successful application of a selective finish. The selective finish is the final chemical step of the PCB manufacturing process, this is when the panels are at their most valuable and are unfortunately not re-workable. Imperfections are not tolerated, even if they are wholly cosmetic. Quality issues often manifest themselves in the form of a 'ping pong' conversation between the fabricators, the soldermask suppliers and the selective finish suppliers. Without tangible evidence these discussions are difficult to resolve and the selective finish process is usually regarded as responsible. This paper will focus on the chemical characteristics and use them to predict or identify potential issues before they occur rather than specifically name 'critical' soldermasks. It is also the intention of this paper to address the potential of a soldermask to react to common yield hiking practices like UV bumping and oven curing. It is hoped that this awareness will help fabricators to ensure maximum yields by asking the right questions. 'Critical’ soldermasks impact all selective finishes. In this paper, practical experience using immersion tin will be used to highlight the relationship between 'critical' soldermasks and some of the issues seen in the field. The paper will include a novel approach to identify re-deposited volatiles after the reflow.

Atotech

ULTRAVIOLET (UV) CURING TECHNOLOGY

Technical Library | 2015-08-18 14:02:37.0

What is UV Curing? “Ultraviolet (UV) light is an electromagnetic radiation with a wavelength from 400 nm to 100 nm, shorter than that of visible light but longer than X-rays.” (Source: Wikipedia). Ultraviolet or UV curing is used to create a photochemical reaction using high intensity Ultraviolet (UV) energy or “light” to quickly dry inks, adhesives or conformal coatings. Most materials cure with a UV wavelength around 350 ~ 400nm although some materials require UVC energy near 255nm. There are many advantages to using UV curing over other traditional methods of curing. Not only will it increase production speed, it assists in creating a better bond, and improves scratch and solvent resistance. When compared to other methods of curing, UV curing generates a more reliable cured product at a much higher rate of production in a considerably shorter period of time.

ETS - Energy Technology Systems, Inc.

Thermal Curing of Conformal Coatings

Technical Library | 2015-07-27 16:58:29.0

When it comes to the application of conformal coating, curing the coating plays a key role in the circuit assembly and selective conformal coating process. Curing conformal coating occurs after the coating spray/dispense process is complete. The coating is considered “cured” when the conformal coating on the circuit assembly is sufficiently tack-free to be handled. Curing can sometimes be accomplished at room temperature but takes a considerable amount of time to dry. Accelerated conformal coating curing decreases this drying period, the cure process reaches either the tack-free or a fully dried state but not quite having fully cured properties. Accelerated curing techniques include one or a combination of heat, moisture, UV light, and chemical reaction curing. This article focuses primarily on thermal or heat curing.

ETS - Energy Technology Systems, Inc.

Thermal Spot Curing of Adhesives with Photonic Energy; a novel fiber delivery method of radiant heating to accelerate the polymerization of thermally active adhesives

Technical Library | 2011-09-22 16:30:11.0

The remainder of this paper will deal with the adhesive cure mechanism most often found in the microelectronics industry; the thermal activation and cure of adhesives that are most commonly based on epoxy backbones. The use of heat is already prevalent in the microelectronics industry as most printed circuit board assemblies use some element of this thermal energy (reflow ovens for example) during the component soldering and assembly stage or during their burn-in stage (convection ovens).

IRphotonics

High and Matched Refractive Index Liquid Adhesives for Optical Device Assembly

Technical Library | 2020-09-30 19:23:47.0

There is an increase in the number of optical sensors and cameras being integrated into electronics devices. These go beyond cell phone cameras into automotive sensors, wearables, and other smart devices. The applications can be lens bonding, waveguide imprinting, or other applications where the adhesive is in the optical pathway. To support these various optical applications, new materials with tailorable optical properties are required. There is often a mismatched refractive index between plastic lenses such as PC (Poly Carbonate), COP (Cyclo Olefin Polymer), COC (Cyclo Olefin Copolymer), PMMA (Poly Methyl Methacrylate), and UV curable liquid adhesive. A UV curable liquid adhesive is needed where you can alter the refractive index from 1.470 to 1.730, and maintain high optical performance as yellowness index, haze, and transmittance. This wide range of refractive index possibilities provides optimized optical design. Using particular plastic lens must consider how chemical attack is occurring during the process. Another consideration is that before the UV curable liquid adhesive is cured, chemical raw component can attack the plastic lens which then cracks and delaminates. We will also show engineering and reliability data which defined root cause and provided how optical performance is maintained under different reliability conditions.

Kyoritsu Chemical & Co., Ltd

Ultrathin Fluoropolymer Coatings to Mitigate Damage of Printed Circuit Boards Due to Environmental Exposure

Technical Library | 2016-05-19 16:03:37.0

As consumers become more reliant on their handheld electronic devices and take them into new environments, devices are increasingly exposed to situations that can cause failure. In response, the electronics industry is making these devices more resistant to environmental exposures. Printed circuit board assemblies, handheld devices and wearables can benefit from a protective conformal coating to minimize device failures by providing a barrier to environmental exposure and contamination. Traditional conformal coatings can be applied very thick and often require thermal or UV curing steps that add extra cost and processing time compared to alternative technologies. These coatings, due to their thickness, commonly require time and effort to mask connectors in order to permit electrical conductivity. Ultra-thin fluorochemical coatings, however, can provide excellent protection, are thin enough to not necessarily require component masking and do not necessarily require curing. In this work, ultra-thin fluoropolymer coatings were tested by internal and industry approved test methods, such as IEC (ingress protection), IPC (conformal coating qualification), and ASTM (flowers-of-sulfur exposure), to determine whether this level of protection and process ease was possible.

3M Company

  1 2 Next

uv curing oven searches for Companies, Equipment, Machines, Suppliers & Information

Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications
SMT spare parts - Qinyi Electronics

High Precision Fluid Dispensers
Selective soldering solutions with Jade soldering machine

High Throughput Reflow Oven
Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.