Technical Library: printed circuit board

Accurate Quantitative Physics-of-Failure Approach to Integrated Circuit Reliability

Technical Library | 2011-06-02 15:49:09.0

Modern electronics typically consist of microprocessors and other complex integrated circuits (ICs) such as FPGAs, ADCs, and memory. They are susceptible to electrical, mechanical and thermal modes of failure like other components on a printed circuit boa

DfR Solutions

Implementing Robust Bead Probe Test Processes into Standard Pb-Free Assembly

Technical Library | 2015-08-20 15:18:38.0

Increasing system integration and component densities continue to significantly reduce the opportunity to access nets using standard test points. Over time the size of test points has been drastically reduced (as small as 0.5 mm in diameter) but current product design parameters have created space and access limitations that remove even the option for these test points. Many high speed signal lines have now been restricted to inner layers only. Where surface traces are still available for access, bead probe technology is an option that reduces test point space requirements as well as their effects on high speed nets and distributes mechanical loading away from BGA footprints enabling test access and reducing the risk of mechanical defects associated with the concentration of ICT spring forces under BGA devices. Building on Celestica's previous work characterizing contact resistance associated with Pr-free compatible surface finishes and process chemistry; this paper will describe experimentation to define a robust process window for the implementation of bead probe and similar bump technology that is compatible with standard Pb-free assembly processes. Test Vehicle assembly process, test methods and "Design of Experiments" will be described. Bead Probe formation and deformation under use will also be presented along with selected results.

Celestica Corporation

Alternatives to HASL: Users Guide for Surface Finishes

Technical Library | 1999-08-09 11:11:55.0

A great deal of controversy continues to surround the use of Hot Air Solder Leveling (HASL) in the production of printed circuit boards (PCBs). The financial burden, technological limitations and environmental issues surrounding the HASL process continue to grow. This requires an in-depth review by the printed circuit board manufacturing plant, as well as the assembly operation and instrument designers ( OEMs), to determine what alternative surface finishes are appropriate.

Viasystems Group, Inc.

Stencil Design Using Regression:Following IPC 7525 a Way Better

Technical Library | 2010-03-25 06:26:37.0

The complexity of Printed Circuit Assembly process is increasing day by day and causing productivity issues in the industry, introducing ultra fine pitch components (pitch less than 15mil) in PCA is a challenge to minimize risk of defects as solder short, dry solder. This paper is focusing on minimizing these defects.

Larsen Toubro Medical Equipment & Systems Ltd

Printable Nanocomposites for Electronic Packaging

Technical Library | 2008-06-25 16:11:51.0

Printing technologies provide a simple solution to build electronic circuits on o low cost flexible substrates. Nanocomposites will play important role for developing advanced printable technology. Advanced printing is relatively new technology and need more characterization and optimization for practical applications. In the present paper, we examine the use of nanocomposites or materials in the area of printing technology.

i3 Electronics

Extreme Long Term Printed Circuit Board Surface Finish Solderability Assessment

Technical Library | 2021-01-28 01:55:00.0

Printed circuit board surface finishes are a topic of constant discussion as environmental influences, such as the Restriction of Hazardous Substances (RoHS) Directive or technology challenges, such as flip chip and 01005 passive components, initiate technology changes. These factors drive the need for greater control of processing characteristics like coplanarity and solderability, which influence the selection of surface finishes and impact costs as well as process robustness and integrity. The ideal printed circuit board finish would have good solderability, long shelf life, ease of fabrication/processing, robust environmental performance and provide dual soldering/wirebonding capabilities; unfortunately no single industry surface finish possesses all of these traits. The selection of a printed circuit board surface finish is ultimately a series of compromises for a given application.

Solderability Testing and Solutions Inc

Solder Charge Grid Array: Advancements In The Technology Of Surface Mount Area Array Solder Joint Attachment

Technical Library | 2011-12-29 17:33:21.0

2011 IPC APEX EXPO Conference Article: Surface mount area arrays (SMAA) have been in existence for decades and are increasingly becoming more important as printed circuit board (PCB) assemblies become further complex with package miniaturization and densi


Virtual Access Technique Augments Test Coverage on Limited Access PCB Assemblies

Technical Library | 2012-05-03 20:40:10.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. Increased pressures to reduce time to market and time to volume have forced many manufacturers of populated printed circuit boards to rely on capacitively coupled, un-powered, vec


A Novel Local Search Integer-Programming-Based Heuristic for PCB Assembly on Collect-and-Place Machines

Technical Library | 2011-11-03 18:04:07.0

This paper presents the development of a novel vehicle-routing-based algorithm for optimizing component pick-up and placement on a collect-and-place type machine in printed circuit board manufacturing. We present a two-phase heuristic that produces soluti

Mechanical Science and Engineering at UIUC

Advances in Conductive Inks across Multiple Applications and Deposition Platforms

Technical Library | 2012-12-27 14:35:29.0

Printed Electronics is generally defined as the patterning of electronic materials, in solution form, onto flexible substrates, omitting any use of the photolithography, etching, and plating steps commonly found within the Printed Circuit Board (PCB) industry. The origins of printed electronics go back to the 1960s, and close variants of several original applications and market segments remain active today. Through the 1980s and 1990s Printed Electronic applications based on Membrane Touch Switch and Electroluminescent lighting technologies became common, and the screen printed electronic materials used then have formed the building blocks for many of the current and emerging technologies and applications... First published in the 2012 IPC APEX EXPO technical conference proceedings.


printed circuit board, job opportunities searches for Companies, Equipment, Machines, Suppliers & Information