Technical Library: pcb cleaning machine (Page 5 of 7)

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Cleaning Flux Residue under Leadless Components using Objective Evidence to Determine Cleaning Performance

Technical Library | 2019-08-14 22:20:55.0

Cleanliness is a product of design, including component density, standoff height and the cleaning equipment’s ability to deliver the cleaning agent to the source of residue. The presence of manufacturing process soil, such as flux residue, incompletely activated flux, incompletely cured solder masks, debris from handling and processing fixtures, and incomplete removal of cleaning fluids can hinder the functional lifetime of the product. Contaminates trapped under a component are more problematic to failure. Advanced test methods are needed to obtain "objective evidence" for removing flux residues under leadless components.Cleaning process performance is a function of cleaning capacity and defined cleanliness. Cleaning performance can be influenced by the PCB design, cleaning material, cleaning machine, reflow conditions and a wide range of process parameters.This research project is designed to study visual flux residues trapped under the bottom termination of leadless components. This paper will research a non-destructive visual method that can be used to study the cleanability of solder pastes, cleaning material effectiveness for the soil, cleaning machine effectiveness and process parameters needed to render a clean part.

KYZEN Corporation

SMT Stencil Cleaning: A Decision That Could Impact Production

Technical Library | 2021-11-16 22:17:27.0

Ultrasonics, coupled with an aqueous detergent process that cleans at below 43ºC, may be best suited for fine-pitch SMT screens and stencils. Aqueous detergents clean more effectively than solvents, with little or no environmental impact. Because of the environmental concerns driving today's technology decisions, the once simple decision of selecting a stencil cleaning process is now clouded with different chemicals, different cleaning machines and various types of solder paste, all with specific environmental, health and safety related issues and regulations.

Xerox

Stencil Cleaning Handbook

Technical Library | 2022-08-17 01:21:54.0

Back in the "good old days," stencil cleaning was effortless and effective. CFC-based solvents were sprayed or wiped onto a stencil with apertures hundreds of times larger than modern-day components. The stencil cleaning process was not considered a value-added procedure; instead it was the cleaning of a production tool. How times have changed. The late-1980s ushered in the end of most of the popular solvents, and the machines that consumed them. Assemblers turned to alternative cleaning agents, including IPAs and other solvents.

Aqueous Technologies Corporation

Cleaning PCB's in Electronics - Understanding Today's Needs.

Technical Library | 2014-03-27 14:50:01.0

Because of the phase out of CFC's and HCFC's, standard solder pastes and fluxes evolved from RA and RMA fluxes, to No-Clean, to low residue No-Clean, to very low residue No-Clean. Many companies came out with their cleaning solutions, aqueous and semi-aqueous, with each product release being more innovative than the previous one. Unfortunately for most of the suppliers of cleaners, two other trends appeared; lead-free soldering and the progressive miniaturization of electronic devices.

Inventec Performance Chemicals

What Cannot Be Cleaned In a Stencil Cleaner

Technical Library | 2009-09-18 14:48:58.0

The stencil cleaner can be one of the most versatile tools on the manufacturing floor. It can be used to clean electronic modules in various stages of the manufacturing process. In fact, an automated stencil cleaner can clean just about anything you come up against in your PCB assembly process.

Austin American Technology

When the Soldering Specialist Bans Soldering Fume

Technical Library | 2019-05-24 07:26:39.0

Soldering system vendor SEHO runs a Technology Center in its headquarters in Germany, in which all available machines are exhibited and demonstrated. Additionally, the SEHO Academy provides knowledge as a perfect balance of theory and practical application. In both facilities soldering fume occurs, which has damaging effects on human health, manufacturing equipment and products. That's why the company had installed several air cleaning solutions in terms of fume extraction technology. How and why they take care of clean air is the subject of this article.

ULT Canada Sales Incorporated

Detection of Bare PCB Defects by Image Subtraction Method using Machine Vision

Technical Library | 2011-08-11 20:06:48.0

(Proceedings of the World Congress on Engineering 2011) A Printed Circuit Board (PCB) consists of circuit with electronic components mounted on surface. There are three main steps involved in manufacturing process, where the inspection of PCB is necessar

Sant Longowal Institute of Engineering and Technology (SLIET)

NanoClear Coated Stencils

Technical Library | 2023-05-22 16:49:42.0

Our customers' issues • Apertures are getting smaller • Paste does not release as well • Contaminates the bottom of the stencil • Increases defects / reduces yield  Insufficient solder  Bridging  Solder balls on surface of PCB  Flux residue • Requires more frequent cleaning • Reduced efficiency (wasted time) • Increased use of consumables (cost)  USC fabric (use "cheap" fabric to reduce cost)  Lint creates more defects  Cleaning chemistries (use IPA to reduce cost)  IPA breaks down flux and can create more defects

ASM Assembly Systems (DEK)

No-Clean Flux Residue and Underfill Compatibility Effects on Electrical Reliability

Technical Library | 2013-04-11 15:43:17.0

With the explosion of growth in handheld electronics devices, manufacturers have been forced to look for ways to reinforce their assemblies against the inevitable bumps and drops that their products experience in the field. One method of reinforcement has been the utilization of underfills to "glue" certain SMDs to the PCB. Bumped SMDs attached to the PCB with a no-clean soldering process offer the unavoidable scenario of the underfill coming in contact with a flux residue. This may or may not create a reliability issue... First published in the 2012 IPC APEX EXPO technical conference proceedings

Indium Corporation


pcb cleaning machine searches for Companies, Equipment, Machines, Suppliers & Information

Precision PCB Services, Inc
Precision PCB Services, Inc

Products, services, training & consulting for the assembly, rework & repair of electronic assemblies. BGA process experts. Manufacturers Rep, Distributor & Service Provider for Seamark/Zhuomao and Shuttle Star BGA Rework Stations.

Training Provider / Manufacturer's Representative / Equipment Dealer / Broker / Auctions / Consultant / Service Provider

1750 Mitchell Ave.
Oroville, CA USA

Phone: (888) 406-2830