Technical Library: thermal cycles (Page 5 of 7)

Statistical Aspect on the Measuring of Intermetallic Compound Thickness of Lead Free Solders

Technical Library | 2018-05-17 11:14:52.0

Intermetallic compound (IMC) growth is being studied in earnest in this past decade because of its significant effect the solder joint reliability. It appears that from numerous investigations conducted, excessive growth of IMC could lead to solder joint failure. Leading to this, many attempts has been made to determine the actual IMC thickness. However, precise and true representation of the growth in the actual 3D phenomenon from 2D cross-section investigations has remained unclear. This paper will focus on the measuring the IMC thickness using 3D surface profilometer (Alicona Focus G4). Lead free solder, Sn3.0Ag0.5Cu (SAC305) was soldered onto copper printed circuit board (Cu PCB). The samples were then subjected to thermal cycle (TC) storage process with temperature range from 0 °C to 100 °C for 200 cycles and up to 1000 cycles were completed.

Universiti Kebangsaan Malaysia

Effect of Silver in Common Lead-Free Alloys

Technical Library | 2023-01-02 17:50:34.0

Silver bearing alloys have been used in electronics soldering for many years. Silver has been used in tin-lead solders (Sn62Pb36Ag2) to combat silver scavenging from silver plated electronic components as well as to improve thermal fatigue resistance. Many of the common lead-free alloys contain some amount of silver. Silver bearing alloys have good electrical and thermal conductivity as well as the ability to wet to the common surface finishes used in printed wiring assemblies, thus giving it all the attributes needed for an electronic solder alloy. Presence of silver in Sn based solders increases the bulk solder modulus and is generally believed to improve resistance to fatigue from thermal cycles. Increased solder modulus can be advantageous or disadvantageous depending on the desired performance attribute. For example in high strain rate situations, higher modulus of the bulk solders results in lower life time. A wide variety of leaded and lead-free

Cookson Electronics Assembly Materials

Improving Thermal Cycle and Mechanical Drop Impact Resistance of a Lead-free Tin-Silver-Bismuth-Indium Solder Alloy with Minor Doping of Copper Additive

Technical Library | 2018-07-11 22:46:13.0

For a demanding automotive electronics assembly, a highly thermal fatigue resistant solder alloy is required, which makes the lead-free Sn-Ag-Cu type solder alloy unusable. Sn-Ag-Bi-In solder alloy is considered as a high reliability solder alloy due to significant improvement in thermal fatigue resistance as compared to a standard Sn-Ag-Cu alloy. The alloy has not only good thermal fatigue properties but it also has superior ductility and tensile strength by appropriate addition of In; however, initial results indicated a sub-par performance in joint reliability when it is soldered on a printed circuit board (PCB) with Electroless Nickel Immersion Gold (ENIG) surface finish. Numerous experiments were performed to find out appropriate alloying element which would help improve the performance on ENIG PCBs. Sn-Ag-Bi-In solder alloys with and without Cu additions were prepared and then tests were carried out to see the performance in a thermal fatigue test and a drop resistance test.to investigate the impact of Cu addition towards the improvement of joint reliability on ENIG finish PCB. Also, the mechanism of such improvement is documented.

Koki Company LTD

Reliability Study of Low Silver Alloy Solder Pastes

Technical Library | 2016-09-01 16:21:11.0

Sn3.0Ag0.5Cu (SAC305) is currently the most popular near eutectic lead-free alloy used in the manufacturing processes. Over the last several years, the price of silver has dramatically increased driving a desire for lower silver alloy alternatives. As a result, there is a significant increase in the number of alternative low/no silver lead-free solder alloys available in the industry recently. Our previous study showed that many alternative low silver solder paste materials had good printing and wetting performance as compared to SAC305 solder pastes. However, there is lack of information on the reliability of alternative alloy solder joints assembled using alternative low silver alloy solder pastes.In this paper, we will present the reliability study of lead-free solder joints reflowed using various lead-free alloy solder pastes after thermal cycling test (3000 cycles, 0°C to 100°C). Six different lead-free pastes were investigated. SAC305 solder joints were used as the control. Low and no silver solder pastes and a low temperature SnBiAg solder pastes were also included.

Flex (Flextronics International)

Physics of Failure (PoF) Based Lifetime Prediction of Power Electronics at the Printed Circuit Board Level

Technical Library | 2021-09-15 19:00:35.0

This paper presents the use of physics of failure (PoF) methodology to infer fast and accurate lifetime predictions for power electronics at the printed circuit board (PCB) level in early design stages. It is shown that the ability to accurately model silicon–metal layers, semiconductor packaging, printed circuit boards (PCBs), and assemblies allows, for instance, the prediction of solder fatigue failure due to thermal, mechanical, and manufacturing conditions. The technique allows a lifecycle prognosis of the PCB, taking into account the environmental stresses it will encounter during the period of operation. Primarily, it involves converting an electronic computer aided design (eCAD) circuit layout into computational fluid dynamic (CFD) and finite element analysis (FEA) models with accurate geometries. From this, stressors, such as thermal cycling, mechanical shock, natural frequency, and harmonic and random vibrations, are applied to understand PCB degradation, and semiconductor and capacitor wear, and accordingly provide a method for high-fidelity power PCB modelling, which can be subsequently used to facilitate virtual testing and digital twinning for aircraft systems and sub-systems.

Cranfield University

iNEMI Pb-Free Alloy Characterization Project Report: Part II - Thermal Fatigue Results For Two Common Temperature Cycles

Technical Library | 2021-09-08 14:10:12.0

The Pb-Free Alloy Characterization Program sponsored by International Electronics Manufacturing Initiative (iNEMI) is conducting an extensive investigation using accelerated temperature cycling (ATC) to evaluate ball grid array (BGA) thermal fatigue performance of 12 commercial or developmental Sn based Pb-free solder alloys. This paper presents the initial findings from a specific subset of the temperature cycling test matrix. The focus is on comparing alloy performance for two of the most commonly specified temperature cycles, 0 to 100 °C and -40 to 125 °C.

iNEMI (International Electronics Manufacturing Initiative)

ADVANCED BORON NITRIDE EPOXY FORMULATIONS EXCEL IN THERMAL MANAGEMENT APPLICATIONS

Technical Library | 2020-10-14 14:33:36.0

Epoxy based adhesives are prevalent interface materials for all levels of electronic packaging. One reason for their widespread success is their ability to accept fillers. Fillers allow the adhesive formulator to tailor the electrical and thermal properties of a given epoxy. Silver flake allow the adhesive to be both electrically conductive and thermally conductive. For potting applications, heat sinking, and general encapsulation where high electrical isolation is required, aluminum oxide has been the filler of choice. Today, advanced Boron Nitride filled epoxies challenge alternative thermal interface materials like silicones, greases, tapes, or pads. The paper discusses key attributes for designing and formulating advanced thermally conductive epoxies. Comparisons to other common fillers used in packaging are made. The filler size, shape and distribution, as well as concentration in the resin, will determine the adhesive viscosity and rheology. Correlation's between Thermal Resistance calculations and adhesive viscosity are made. Examples are shown that determination of thermal conductivity values in "bulk" form, do not translate into actual package thermal resistance. Four commercially available thermally conductive adhesives were obtained for the study. Adhesives were screened by shear strength measurements, Thermal Cycling ( -55 °C to 125 °C ) Resistance, and damp heat ( 85 °C / 85 %RH ) resistance. The results indicate that low modulus Boron Nitride filled epoxies are superior in formulation and design. Careful selection of stress relief agents, filler morphology, and concentration levels are critical choices the skilled formulator must make. The advantages and limitations of each are discussed and demonstrated.

Epoxy Technology, Inc.

Influence of Pd Thickness on Micro Void Formation of Solder Joints in ENEPIG Surface Finish

Technical Library | 2012-12-13 21:20:05.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. We investigated the micro-void formation of solder joints after reliability tests such as preconditioning (precon) and thermal cycle (TC) by varying the thickness of Palladium (Pd) in Electroless Nickel / Electroless Palladium / Immersion Gold (ENEPIG) surface finish. We used lead-free solder of Sn-1.2Ag-0.5Cu-Ni (LF35). We found multiple micro-voids of less than 10 µm line up within or above the intermetallic compound (IMC) layer. The number of micro-voids increased with the palladium (Pd) layer thickness. Our results revealed that the micro-void formation should be related to (Pd, Ni)Sn4 phase resulted from thick Pd layer. We propose that micro-voids may form due to either entrapping of volatile gas by (Pd, Ni)Sn4 or creeping of (Pd, Ni)Sn4.

Samsung Electro-Mechanics

Press Fit Technology Roadmap and Control Parameters for a High Performance Process

Technical Library | 2016-10-27 16:24:23.0

Press-fit technology is a proven and widely used and accepted interconnection method for joining electronics assemblies. Printed Circuit Board Assembly Systems and typical functional subassemblies are connected through press-fit connectors. The Press-Fit Compliant Pin is a proven interconnect termination to reliably provide electrical and mechanical connections from a Printed Circuit Board to an Electrical Connector. Electrical Connectors are then interconnected together providing board to board electrical and mechanical inter-connection. Press-Fit Compliant Pins are housed within Connectors and used on Backplanes, Mid-planes and Daughter Card Printed Circuit Board Assemblies. High reliability OEM (Original Equipment Manufacturer) computer designs continue to use press-fit connections to overcome challenges associated with soldering, rework, thermal cycles, installation and repair. This paper investigates the technical roadmap for press fit technology, putting special attention to main characteristics such, placement and insertion, inspection, repair, pin design trends, challenges and solutions. Critical process control parameters within an assembly manufacturing are highlighted.

Flex (Flextronics International)

DoD/EPA/DOE SERDP WP-2213: Novel Whisker Mitigating Composite Conformal Coat Assessment

Technical Library | 2023-02-13 19:14:03.0

Technology Focus: Develop and evaluate nanoparticle filled conformal coatings designed to provide long term whisker penetration resistance and coverage on tin rich metal surfaces prone to whisker growth in commercial lead-free electronics used in modern DoD systems. Research Objectives: Identify the fundamental mechanisms by which conformal coatings provide long-term tin whisker penetration resistance and inhibit nucleation/growth. Correlate mechanical properties and coverage thickness to whisker penetration resistance. Project Progress and Results: Functionalized nanosilica and non-functional nanoalumina enhanced polyurethane conformal coatings have shown improved spray coating coverage characteristics and crack resistance during thermal cycling fatigue testing. Lead-free assembly whisker mitigation validation testing is in process. Technology Transition: Current project partners provide coating materials to industry. SERDP test data will be considered during updates to the DoD adopted IPC standards for coating materials and coverage.

BAE SYSTEMS


thermal cycles searches for Companies, Equipment, Machines, Suppliers & Information