Technical Library: soldering alloy (Page 9 of 10)

Effect Of Vacuum Reflow On Solder Joint Voiding In Bumped Components

Technical Library | 2021-04-21 15:10:16.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness. Due to the various advantages they offer, the use of Ball Grid Array packages is common across all industry sectors. They are also prone to process voiding issues. This study was performed to determine if vacuum assisted reflow process can help alleviate the voids in area array solder joints. Test parameters in this study largely focused on vacuum pressure level and vacuum dwell time.

Auburn University

Effect Of Vacuum Reflow On Solder Joint Voiding In Bumped Components

Technical Library | 2022-10-31 18:35:40.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness. Due to the various advantages they offer, the use of Ball Grid Array packages is common across all industry sectors. They are also prone to process voiding issues. This study was performed to determine if vacuum assisted reflow process can help alleviate the voids in area array solder joints. Test parameters in this study largely focused on vacuum pressure level and vacuum dwell time.

Auburn University

A Study to Determine the Impact of Solder Powder Mesh Size and Stencil Technology Advancement on Deposition Volume when Printing Solder Paste

Technical Library | 2017-04-13 16:14:27.0

The drive to reduced size and increased functionality is a constant in the world of electronic devices. In order to achieve these goals, the industry has responded with ever-smaller devices and the equipment capable of handling these devices. The evolution of BGA packages and leadless devices is pushing existing technologies to the limit of current assembly techniques and materials.As smaller components make their way into the mainstream PCB assembly market, PCB assemblers are reaching the limits of Type 3 solder paste, which is currently in use by most manufacturers.The goal of this study is to determine the impact on solder volume deposition between Type 3, Type 4 and Type 5 SAC305 alloy powder in combination with stainless steel laser cut, electroformed and the emerging laser cut nano-coated stencils. Leadless QFN and μBGA components will be the focus of the test utilizing optimized aperture designs.

AIM Solder

Reduce Pollution of Process Gasses in an Air Reflow Oven

Technical Library | 2019-07-02 23:02:05.0

The introduction of lead-free solders resulted in a selection of different chemistries for solder pastes. The higher melting points of lead-free alloys required thermal heat resistant rosin systems and activators that are active at elevated temperatures. As a result, more frequent maintenance of the filtration systems is required and machine downtime is increased.Last year a different method of cleaning reflow ovens was introduced. Instead of cooling down the process gasses to condensate the residues, a catalyst was used to maintain the clean oven. Catalytic thermal oxidation of residues in the nitrogen atmosphere resulted in cleaner heating zones. The residues were transformed into carbon dioxide. This remaining small amount of char was collected in the catalyst. In air ovens the catalyst was not seen as a beneficial option because the air extracted out of the oven was immediately exhausted into the environment. When a catalyst is used in an air environment there is not only the carbon dioxide residues, but also water. When a catalyst is used in an air reflow oven the question is where the water is going to. Will it condensate in the process part of the oven or is the gas temperature high enough to keep it out of the process area? A major benefit of using a catalyst to clean the air before it is exhausted into the environment is that the air pollution is reduced dramatically. This will make environmental engineers happy and result in less pollution of our nature. Apart from this, the exhaust tubes remain clean which reduces the maintenance of air ovens.This paper will give more detailed information of catalyst systems during development and performance in production lines.

Vitronics Soltec

Pb-free solders: Comparison of different geometrical models in calculating of enthalpy of mixing of In-Sn-Zn ternary system.

Technical Library | 2014-05-22 17:10:37.0

In this paper, the general solution model of Chou has been used to predict the integral enthalpies of mixing of liquid In-Sn-Zn ternary alloys in five selected sections, xIn/xSn = 0.15/0.85, 0.34/0.66, 0.50/0.50, 0.67/0.33 and 0.85/0.15. The other traditional models such as Kohler, Muggianu, Toop and Hillert are also included in calculations. Comparison with literature data was done and showed reasonable agreement with Toop and Hillert asymmetric models.

Université Mohammed V-Agdal

The Great SAC Debate: Comparing The Reliability Of SAC305 And SAC405 Solders In A Variety Of Applications

Technical Library | 2021-09-08 14:23:27.0

Although the electronics industry has largely settled on the use of SAC alloys for the assembly of the majority of lead free products, debate continues to exist over which SAC alloy – SAC305 (Sn3.0Ag0.5Cu) or SAC405 (Sn3.8Ag0.8Cu) – to use. The North American industry generally favours SAC405, while the Asian industry favours SAC305. SAC305 has the significant benefit of being less expensive than SAC405 owing to its lower silver content. However, there are lingering questions about whether the reliability of SAC305 is comparable to that of SAC405. Recent studies have concluded that no significant difference exists, but many potential applications were not studied. This paper compares the results of reliability testing of SAC305 and SAC405 in three different cases on a test vehicle representative of a mid-complexity server-type product which included a range of component types from CBGAs to discrete resistors.

Celestica Corporation

A High Thermal Conductive Solderable Adhesive

Technical Library | 2016-11-17 14:37:41.0

With increasing LED development and production, thermal issues are becoming more and more important for LED devices, particularly true for high power LED and also for other high power devices. In order to dissipate the heat from the device efficiently, Au80Sn20 alloy is being used in the industry now. However there are a few drawbacks for Au80Sn20 process: (1) higher soldering temperature, usually higher than 320°C; (2) low process yield; (3) too expensive. In order to overcome the shortcomings of Au80Sn20 process, YINCAE Advanced Materials, LLC has invented a new solderable adhesive – TM 230. Solderable adhesives are epoxy based silver adhesives. During the die attach reflow process, the solder material on silver can solder silver together, and die with pad together. After soldering, epoxy can encapsulate the soldered interface, so that the thermal conductivity can be as high as 58 W/mk. In comparison to Au80Sn20 reflow process, the solderable adhesive has the following advantages: (1) low process temperature – reflow peak temperature of 230°C; (2) high process yield – mass reflow process instead of thermal compression bonding process; (3) low cost ownership. In this paper we are going to present the die attach process of solderable adhesive and the reliability test. After 1000 h lighting of LED, it has been found that there is almost no decay in the light intensity by using solderable adhesive – TM 230.

YINCAE Advanced Materials, LLC.

Vapor Phase Technology and its Application

Technical Library | 2013-03-27 23:43:40.0

Vapor phase, once cast to the annals’ of history is making a comeback. Why? Reflow technology is well developed and has served the industry for many years, it is simple and it is consistent. All points are true – when dealing with the centre section of the bell curve. Today’s PCB manufacturers are faced with many designs which no longer fall into that polite category but rather test the process engineering groups with heavier and larger panels, large ground planes located in tricky places, component mass densities which are poorly distributed, ever changing Pb Free alloys and higher process temperatures. All the time the costs for the panels increase, availability of “process trial” boards diminishes and yields are expected to be extremely high with zero scrap rates. The final process in the assembly line has the capacity to secure all the value of the assembly or destroy it. If a panel is poorly soldered due to poor Oven setup or incorrect programming of the profile the recovery of the panel is at best expensive, at worst a loss. For these challenges people are turning to Vapor Phase.

A-Tek Systems Group LLC

ASSESSMENT OF ACCRUED THERMO-MECHANICAL DAMAGE IN LEADFREE PARTS DURING FIELD-EXPOSURE TO MULTIPLE ENVIRONMENTS

Technical Library | 2022-10-11 20:29:31.0

Electronic assemblies deployed in harsh environments may be subjected to multiple thermal environments during the use-life of the equipment. Often the equipment may not have any macro-indicators of damage such as cracks or delamination. Quantiication of thermal environments during use-life is often not feasible because of the data-capture and storage requirements, and the overhead on core-system functionality. There is need for tools and techniques to quantify damage in deployed systems in absence of macro-indicators of damage without knowledge of prior stress history. The presented PHM framework is targeted towards high reliability applications such as avionic and space systems. In this paper, Sn3.0Ag0.5Cu alloy packages have been subjected to multiple thermal cycling environments including -55 to 125C and 0 to 100C. Assemblies investigated include area-array packages soldered on FR4 printed circuit cards. The methodology involves the use of condition monitoring devices, for gathering data on damage pre-cursors at periodic intervals. Damage-state interrogation technique has been developed based on the Levenberg-Marquardt Algorithm in conjunction with the microstructural damage evolution proxies. The presented technique is applicable to electronic assemblies which have been deployed on one thermal environment, then withdrawn from service and targeted for redeployment in a different thermal environment. Test cases have been presented to demonstrate the viability of the technique for assessment of prior damage, operational readiness and residual life for assemblies exposed to multiple thermo-mechanical environments. Prognosticated prior damage and the residual life show good correlation with experimental data, demonstrating the validity of the presented technique for multiple thermo-mechanical environments.

Auburn University

Previous 4 5 6 7 8 9 10  

soldering alloy searches for Companies, Equipment, Machines, Suppliers & Information

Selective soldering solutions with Jade soldering machine

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Selective soldering solutions with Jade soldering machine

Benchtop Fluid Dispenser
Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

Best Reflow Oven
PCB separator

Find a wide selection of nozzles, solder materials, storage solutions and more at SALESCON