Technical Library: board smema communication (Page 1 of 1)

BGA Thermal Shock Testing

Technical Library | 2007-02-01 09:27:47.0

The purpose of the testing was to compare the resistance and check for open circuit conditions of reworked BGA test samples made with and without StencilQuik™ after 500 thermal shock cycles. StencilQuick™ is a product of Best Inc. In this series of tests, the resistance of daisy chain resistance patterns running between the BGA and test board after exposure to thermal shock was measured.

BEST Inc.

Rework of New High Speed Press Fit Connectors

Technical Library | 2019-06-06 00:19:02.0

More and more people and things are using electronic devices to communicate. Subsequently, many electronic products, in particular mobile base stations and core network nodes, need to handle enormous amounts of data per second. One important link in this communication chain is high speed pressfit connectors that are often used to connect mother boards and back planes in core network nodes. These new high speed pressfit connectors have several hundreds of thin, short and weak pins that are prone to damage. Small variations in via hole dimensions or hole plating thickness affect the connections; if the holes are too small, the pins may be bentor permanently deformed and if the holes are too large they will not form gas tight connections.The goal of this project was to understand how rework of these new high speed pressfit connectors affects connection strengths, hole wall deformations and plating cracks.

HDP User Group

Thermal Reliability of Laser Ablated Microvias and Standard Through-Hole Technologies as a Function of Materials and Processing

Technical Library | 2021-12-21 23:15:44.0

High Density Interconnect (HDI) technologies are being used widely in Asia and Europe in consumer electronics for portable wireless communication and computing, digital imaging, and chip packaging. Although North America lags behind in developing process capability for this technology, HDI will become a significant business segment for North America. For this to happen, the printed circuit board shops will have to become process capable in fabricating fine lines and spaces, and also be capable in forming and plating microvias.

Isola Group

Using Metal Core Printed Circuit Board (MCPCB) as a Solution for Thermal Management

Technical Library | 2020-06-19 19:08:14.0

The designs of electronic devices and systems are being continuously improved by becoming smaller in size and faster in communication speed. The potential risk associated with these specific design improvements will be an increase in power density and, consequently, a greater risk of thermal problems and failures. At the same time, the prevailing use of circuit boards integrated with power devices such as motor controllers and drivers, light-emitting diode (LED) lighting modules, power supplies, and amplifiers, and regulators for TV, etc., drive to the use of a proper thermal management system while designing these kinds of printed circuit board (PCB).

Hong Kong Polytechnic University [The]

High Frequency DK and DF Test Methods Comparison High Density Packaging User Group (HDP) Project

Technical Library | 2016-03-24 17:37:09.0

Today's Electronic Industry is changing at a high pace. The root causes are manifold. So world population is growing up to eight billions and gives new challenges in terms of urbanization, mobility and connectivity. Consequently, there will raise up a lot of new business models for the electronic industry. Connectivity will take a large influence on our lives. Concepts like Industry 4.0, internet of things, M2M communication, smart homes or communication in or to cars are growing up. All these applications are based on the same demanding requirement – a high amount of data and increased data transfer rate. These arguments bring up large challenges to the Printed Circuit Board (PCB) design and manufacturing.This paper investigates the impact of different PCB manufacturing technologies and their relation to their high frequency behavior. In the course of the paper a brief overview of PCB manufacturing capabilities is be presented. Moreover, signal losses in terms of frequency, design, manufacturing processes, and substrate materials are investigated. The aim of this paper is, to develop a concept to use materials in combination with optimized PCB manufacturing processes, which allows a significant reduction of losses and increased signal quality.

Alcatel-Lucent

Influence of Copper Conductor Surface Treatment for High Frequency PCB on Electrical Properties and Reliability

Technical Library | 2019-02-13 13:45:11.0

Development of information and telecommunications network is outstanding in recent years, and it is required for the related equipment such as communication base stations, servers and routers, to process huge amount of data in no time. As an electrical signal becomes faster and faster, how to prevent signal delay by transmission loss is a big issue for Printed Circuit Boards (PCB) loaded on such equipments. There are two main factors as the cause of transmission loss; dielectric loss and conductor loss. To decrease the dielectric loss, materials having low dielectric constant and low loss tangent have been developed. On the other hand, reducing the surface roughness of the copper foil itself to be used or minimizing the surface roughness by modifying surface treatment process of the conductor patterns before lamination is considered to be effective in order to decrease the conductor loss. However, there is a possibility that reduction in the surface roughness of the conductor patterns will lead to the decrease in adhesion of conductor patterns to dielectric resin and result in the deterioration of reliability of PCB itself. In this paper, we will show the evaluation results of adhesion performance and electrical properties using certain type of dielectric material for high frequency PCB, several types of copper foil and several surface treatment processes of the conductor patterns. Moreover, we will indicate a technique from the aspect of surface treatment process in order to ensure reliability and, at the same time, to prevent signal delay at the signal frequency over 20 GHz.

MEC Company Ltd.

All-in-One, Wireless, Stretchable Hybrid Electronics for Smart, Connected, and Ambulatory Physiological Monitoring

Technical Library | 2020-08-19 19:13:00.0

Commercially available health monitors rely on rigid electronic housing coupled with aggressive adhesives and conductive gels, causing discomfort and inducing skin damage. Also, research-level skin-wearable devices, while excelling in some aspects, fall short as concept-only presentations due to the fundamental challenges of active wireless communication and integration as a single device platform. Here, an all-in-one, wireless, stretchable hybrid electronics with key capabilities for real-time physiological monitoring, automatic detection of signal abnormality via deep-learning, and a long-range wireless connectivity (up to 15 m) is introduced. The strategic integration of thin-film electronic layers with hyperelastic elastomers allows the overall device to adhere and deform naturally with the human body while maintaining the functionalities of the on-board electronics. The stretchable electrodes with optimized structures for intimate skin contact are capable of generating clinical-grade electrocardiograms and accurate analysis of heart and respiratory rates while the motion sensor assesses physical activities. Implementation of convolutional neural networks for real-time physiological classifications demonstrates the feasibility of multifaceted analysis with a high clinical relevance. Finally, in vivo demonstrations with animals and human subjects in various scenarios reveal the versatility of the device as both a health monitor and a viable research tool.

Georgia Institute of Technology

Making Sense of Laminate Dielectric Properties

Technical Library | 2020-12-16 18:50:42.0

System operating speeds continue to increase as a function of the consumer demand for such technologies as faster Internet connectivity, video on demand, and mobile communications technology. As a result, new high performance PCB substrates have emerged to address signal integrity issues at higher operating frequencies. These are commonly called low Dk and/or low loss (Df) materials. The published "typical" values found on a product data sheet provide limited information, usually a single construction and resin content, and are derived from a wide range of test methods and test sample configurations. A printed circuit board designer or front end application engineer must be aware that making a design decision based on the limited information found on a product data sheet can lead to errors which can delay a product launch or increase the assembled PCB cost. The purpose of this paper is to highlight critical selection factors that go beyond a typical product data sheet and explain how these factors must be considered when selecting materials for high speed applications

Isola Group

Side Wettable Flanks for Leadless Automotive Packaging

Technical Library | 2023-08-04 15:38:36.0

The MicroLeadFrame® (MLF®)/Quad Flat No-Lead (QFN) packaging solution is extremely popular in the semiconductor industry. It is used in applications ranging from consumer electronics and communications to those requiring high reliability performance, such as the automotive industry. The wide acceptance of this packaging design is primarily due to its flexible form factors, size, scalability and thermal dissipation capabilities. The adaptation and acceptance of MLF/QFN packages in automotive high reliability applications has led to the development of materials and processes that have extended its capabilities to meet the performance and quality requirements. One of process developments that is enabling the success of the MLF/QFN within the automotive industry has been the innovation of side wettable flanks that provide the capability to inspect the package lead to printed circuit board (PCB) interfaces for reliable solder joints. Traditionally, through-board X-ray was the accepted method for detecting reliable solder joints for leadless packages. However, as PBC layer counts and routing complexities have increased, this method to detect well-formed solder fillets has proven ineffective and incapable of meeting the inspection requirements. To support increased reliability and more accurate inspection of the leadless package solder joints, processes to form side-wettable flanks have been developed. These processes enable the formation of solder fillets that are detectable using state-of-the-art automated optical inspection (AOI) equipment, providing increased throughput for the surface mount technology (SMT) processes and improved quality as well.

Amkor Technology, Inc.

  1  

board smema communication searches for Companies, Equipment, Machines, Suppliers & Information