Technical Library: g10 fr4 board (Page 1 of 1)

Solder Paste Dispensing For Aerospace and Defense

Technical Library | 2023-08-16 18:16:05.0

A global aerospace and defense leader requested a capability test of small volume solder paste dispensing on FR4 circuit boards.

GPD Global

The Regulatory and Environment Status of Tetrabromobisphenol-A In Printed Wiring Boards

Technical Library | 2012-08-23 21:06:35.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. Tetrabromobisphenol-A (TBBPA) is the predominant flame retardant used in rigid FR-4 printed wiring boards (PWB). In this application, the TBBPA is fully reacted into the epoxy res

Albemarle Corporation

Component Level Reliability For High Temperature Power Computing With SAC305 And Alternative High Reliability Solders

Technical Library | 2017-02-16 16:53:49.0

This experiment considers the reliability of a variety of different electronic components and evaluates them on 0.200” power computing printed circuit boards with OSP. Single-sided assemblies were built separately for the Top-side and Bottom-side of the boards. This data is for boards on the FR4-06 substrate.This paper was originally published by SMTA in the Proceedings of SMTA International.

Auburn University

High Performance Multilayer PCBs Design and Manufacturability

Technical Library | 2013-10-31 17:36:41.0

Multilayer printed circuit boards (PCBs) that utilize high performance materials are inherently far more challenging for a fabricator to build, due to significant material property differences over standard epoxy glass FR4. These unique material characteristics often require higher processing temperatures, special surface treatments (to aid in hole and surface plating), they possess different expansion properties, making layer-to-layer registration more difficult to control, and require many other unique considerations.

Spectrum Integrity, Inc.

Bromide-Free Options for Printed Circuit Boards

Technical Library | 2008-12-11 01:15:56.0

Flame retardants have been around since the Egyptians and Romans used alum to reduce the flammability of wood. Brominated flame retardants (BFRs) first experienced use after World War II as the substitution of wood and metal for plastics and foams resulted in materials that were much more flammable. The widespread use of BFRs initiated in the 1970s with the explosion of electronics and electrical equipment and housings. For the US market, all of these products must conform to the UL 94 flammability testing specifications. In fact, the most common printed circuit board (PCB) in the electronics industry, FR-4, is defined by its structure (glass fiber in an epoxy matrix) and its compliance to UL 94 V0 standard.

DfR Solutions (acquired by ANSYS Inc)

How to choose the material of PCB ?

Technical Library | 2019-12-30 02:09:39.0

How to choose the material of PCB ? The choice of PCB material must meet the design requirements, the quality of production and cost need to achieve a balance. The design requirements include electrical and institutional parts. This material problem is usually important when designing very high speed PCB boards (frequencies greater than GHz). For example, the commonly used FR-4 material may not be used when dielectric loss at several GHz frequencies, which can have a significant effect on signal attenuation . In the case of electrical, it is important to note whether the dielectric constant and the dielectric loss are combined at the designed frequency

PCBONLINE

How Clean is Clean Enough – At What Level Does Each of The Individual Contaminates Cause Leakage and Corrosion Failures in SIR?

Technical Library | 2016-09-08 16:27:49.0

In this investigation a test matrix was completed utilizing 900 electrodes (small circuit board with parallel copper traces on FR-4 with LPI soldermask at 6, 10 and 50 mil spacing): 12 ionic contaminants were applied in five concentrations to three different spaced electrodes with five replicas each (three different bare copper trace spacing / five replications of each with five levels of ionic concentration). The investigation was to assess the electrical response under controlled heat and humidity conditions of the known applied contamination to electrodes, using the IPC SIR (surface insulation resistance) J-STD 001 limits and determine at what level of contamination and spacing the ionic / organic residue has a failing effect on SIR.

Foresite Inc.

A Study on Effects of Copper Wrap Specifications on Printed Circuit Board Reliability

Technical Library | 2021-07-20 20:02:29.0

During the manufacturing of printed circuit boards (PCBs) for a Flight Project, it was found that a European manufacturer was building its boards to a European standard that had no requirement for copper wrap on the vias. The amount of copper wrap that was measured on coupons from the panel containing the boards of interest was less than the amount specified in IPC-6012 Rev B, Class 3. To help determine the reliability and usability of the boards, three sets of tests and a simulation were run. The test results, along with results of simulation and destructive physical analysis, are presented in this paper. The first experiment involved subjecting coupons from the panels supplied by the European manufacturer to thermal cycling. After 17 000 cycles, the test was stopped with no failures. A second set of accelerated tests involved comparing the thermal fatigue life of test samples made from FR4 and polyimide with varying amounts of copper wrap. Again, the testing did not reveal any failures. The third test involved using interconnect stress test coupons with through-hole vias and blind vias that were subjected to elevated temperatures to accelerate fatigue failures. While there were failures, as expected, the failures were at barrel cracks. In addition to the experiments, this paper also discusses the results of finite-element analysis using simulation software that was used to model plated-through holes under thermal stress using a steady-state analysis, also showing the main failure mode was barrel cracking. The tests show that although copper wrap was sought as a better alternative to butt joints between barrel plating and copper foil layers, manufacturability remains challenging and attempts to meet the requirements often result in features that reduce the reliability of the boards. Experimental and simulation work discussed in this paper indicate that the standard requirements for copper wrap are not contributing to the overall board reliability, although it should be added that a design with a butt joint is going to be a higher risk than a reduced copper wrap design. The study further shows that procurement requirements for wrap plating thickness from Class 3 to Class 2 would pose little risk to reliability (minimum 5 μm/0.197 mil for all via types).Experimental results corroborated by modeling indicate that the stress maxima are internal to the barrels rather than at the wrap location. In fact, the existence of Cu wrap was determined to have no appreciable effect on reliability.

NASA Office Of Safety And Mission Assurance

  1  

g10 fr4 board searches for Companies, Equipment, Machines, Suppliers & Information

consignment program

High Precision Fluid Dispensers
convection smt reflow ovens

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
SMT feeders

Smt Feeder repair service centers in Europe, North, South America
December 2024 Auction

We offer SMT Nozzles, feeders and spare parts globally. Find out more
design with ease with Win Source obselete parts and supplies

"Find out how you can receive priority in SMTnet Search with out Sponsor membership."