Technical Library: koki adhesives for screen printing methods (Page 1 of 1)

Screen Making for Printed Electronics- Specification and Tolerancing

Technical Library | 2018-03-28 14:54:36.0

Six decades of legacy experience makes the specification and production of screens and masks to produce repeatable precision results mostly an exercise in matching engineering needs with known ink and substrate performance to specify screen and stencil characteristics. New types of functional and electronic devices, flex circuits and medical sensors, industrial printing, ever finer circuit pitch, downstream additive manufacturing processes coupled with new substrates and inks that are not optimized for the rheological, mechanical and chemical characteristics for the screen printing process are becoming a customer driven norm. Many of these materials do not work within legacy screen making, curing or press set-up parameters. Many new materials and end uses require new screen specifications.This case study presents a DOE based method to pre-test new materials to categorize ink and substrate rheology, compatibility and printed feature requirement to allow more accurate screen recipes and on-press setting expectations before the project enters the production environment where time and materials are most costly and on-press adjustment methods may be constrained by locked, documented or regulatory processes, equipment limitations and employee experience.

Hazardous Print Consulting Inc

Screen and Stencil Printing Processes for Wafer Backside Coating

Technical Library | 2009-09-09 15:08:19.0

Stencil printing equipment has traditionally been used in the surface mount assembly industry for solder paste printing. In recent years the flexibility of the tool has been exploited for a wide range of materials and processes to aid semiconductor packaging and assembly. One such application has been the deposition of adhesive coatings onto the backside of silicon wafers.

ASM Assembly Systems (DEK)

IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments

Technical Library | 2020-03-04 23:53:17.0

Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

SLAS Technology

DOE for Process Validation Involving Numerous Assembly Materials and Test Methods.

Technical Library | 2010-03-18 14:02:03.0

Selecting products that have been qualified by industry standards for use in printed circuit board assembly processes is an accepted best practice. That products which have been qualified, when used in combinations not specifically qualified, may have resultant properties detrimental to assembly function though, is often not adequately understood. Printed circuit boards, solder masks, soldering materials (flux, paste, cored wire, rework flux, paste flux, etc.), adhesives, and inks, when qualified per industry standards, are qualified using very specific test methods which may not adequately mimic the assembly process ultimately used.

Trace Laboratories

High Throw Electroless Copper - Enabling new Opportunities for IC Substrates and HDI Manufacturing

Technical Library | 2017-04-20 13:51:14.0

The one constant in electronics manufacturing is change. Moore's Law, which successfully predicted a rate of change at which transistor counts doubled on Integrated Circuits (ICs) at lower cost for decades, is ceding to be an appropriate prediction tool. Increasing technical and economic requirements, deriving from the semiconductor environment, are cascaded down to the printed circuit and in particular to the IC substrate manufacturers. This is both a challenge and an opportunity for IC Substrate manufacturers, when dealing with the demands of the packaging market. (...)This paper introduces two new electroless copper baths developed for IC substrates manufacturing based on Semi Additive Process (SAP) technology (hereafter referred to as E'less Copper IC) and HDI production (hereafter referred to as E'less Copper HDI) and optimized for high throw into BMVs. An introduction to reliable throwing power measurement methods based on scanning electron microscope (SEM) is given, followed by a compilation and discussion of key performance criteria for each application, namely throwing power, copper adhesion on the substrate, dry film adhesion and reliability.

Atotech

Surface Treatment Enabling Low Temperature Soldering to Aluminum

Technical Library | 2020-07-29 19:58:48.0

The majority of flexible circuits are made by patterning copper metal that is laminated to a flexible substrate, which is usually polyimide film of varying thickness. An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on Polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low cost LED lighting and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder components to at low temperatures and PET cannot withstand high temperatures. Soldering to these materials requires either an additional surface treatment or the use of conductive epoxy to attach components. Surface treatment of aluminum includes the likes of Electroless Nickel Immersion Gold plating (ENIG), which is extensive wet-chemistry and cost-prohibitive for mass adoption. Conductive adhesives, including Anisotropic Conductive Paste (ACP), are another alternate to soldering components. These result in component substrate interfaces that are inferior to conventional solders in terms of performance and reliability. An advanced surface treatment technology will be presented that addresses all these constraints. Once applied on Aluminum surfaces using conventional printing techniques such as screen, stencil, etc., it is cured thermally in a convection oven at low temperatures. This surface treatment is non-conductive. To attach a component, a solder bump on the component or solder printed on the treated pad is needed before placing the component. The Aluminum circuit will pass through a reflow oven, as is commonly done in PCB manufacturing. This allows for the formation of a true metal to metal bond between the solder and the aluminum on the pads. This process paves the way for large scale, low cost manufacturing of Al-PET circuits. We will also discuss details of the process used to make functional aluminum circuits, study the resultant solder-aluminum bond, shear results and SEM/ EDS analysis.

Averatek Corporation

  1  

koki adhesives for screen printing methods searches for Companies, Equipment, Machines, Suppliers & Information

IPC Training & Certification - Blackfox

Software for SMT placement & AOI - Free Download.
SMT spare parts - Qinyi Electronics

Training online, at your facility, or at one of our worldwide training centers"
Win Source Online Electronic parts

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
PCB Handling Machine with CE

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Fully Automatic BGA Rework Station

Low-cost, self-paced, online training on electronics manufacturing fundamentals