Technical Library: time above liquidus tal (Page 1 of 1)

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2023-01-17 17:27:13.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force. Specifically, the effect of the reflow peak temperature and time above solder liquidus temperature are studied. Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb have been developed with three levels of peak temperature (230 o C, 240 o C, and 250 o C for SAC 305; and 195 o C, 205 o C, and 215 o C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear force of the resistors is measured at time 0 (right after assembly). The fracture surfaces have been studied using a scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS)

Heller Industries Inc.

Reflow Profiling: Time Above Liquidus

Technical Library | 2007-12-20 16:28:08.0

Despite much research and discussion on the subject of reflow profiling, many questions and a good deal of confusion still exist. What is clear is that the pains often associated with profiling can be reduced if there is a strong understanding of the variables that can be encountered during the reflow process, as well as the metallurgical dynamics of the soldering process. This paper shall provide a brief outline of the reflow profile in general, with specific emphasis placed upon the suggested time spent above the melting temperature of the solder. The guidelines for soldering to various surfaces and with alternative solder alloys also are discussed.

AIM Solder

Effect of Soldering Parameters on Reaction Kinetics and Phase Transformations of SAC 305 Solder

Technical Library | 2010-07-08 19:56:15.0

As technology becomes increasingly reliant on electronics, understanding the reliability of lead-free solder also becomes increasingly important. This research project focused on phase transformation kinetics with the lead-free solder SAC 305. Today in the electronics industry, SAC 305 is the most widely used solder, making it a high priority to understand its long-term stability and performance in a variety of service conditions. Recent evidence has shifted the focus from thermal aging to reflow temperature and time above liquidus values during initial solder melting.

Radiance Technologies

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

EFFECT OF PROCESS THERMAL HISTORY ON THE MICROSTRUCTURE OF COPPER PILLAR SnAg SOLDER JOINTS

Technical Library | 2024-06-23 21:57:16.0

Two extremes of reflow time scale for copper pillar flip chip solder joints were explored in this study. Sn-2.5Ag solder capped pillars were joined to laminate substrates using either conventional forced convection reflow or the controlled impingement of a defocused infrared laser. The laser reflow joining process was accomplished with an order of magnitude reduction in time above liquidus and a similar increase in solidification cooling rate. The brief reflow time and rapid cooling of a laser impingement reflow necessarily affects all time and temperature dependent phenomena characteristic of reflowed molten solder. These include second phase precipitate dissolution, base metal (copper) dissolution, and the extent of surface wetting. This study examines the reflow dependent microstructural aspects of flip chip Sn-Ag joints on samples of two different size scales, the first with copper pillars of 70μm diameter on 120μm pitch and the second with 23μm diameter pillars on a 40μm pitch. The length scale of Pb-free solder joints is known to affect the Sn grain solidification structure; Sn grain morphology will be noted across both reflow time and joint length scales. Sn grain morphology was further found to be dependent on the extent of surface wetting when such wetting circumvented the copper diffusion barrier layer. Microstructural analysis also will include a comparison of intermetallic structures formed; including the size and number density of second phase Ag3Sn precipitates in the joint and the morphology and thickness of the interfacial intermetallics formed on the pillar and substrate surfaces.

Binghamton University

  1  

time above liquidus tal searches for Companies, Equipment, Machines, Suppliers & Information