

Electronic Product Development Assembly Speed

Fast Time to Market Without Sacrificing Reliability

An European OEM came to us with a simple mandate: ship sooner, without quality drama. Launch windows were tight, variants were high-mix, and audit expectations were EU-grade. We built a program that treats speed and reliability as the same problem - not a trade-off.

How We Made Electronic Product Development Assembly Speed Safe

1) NPI pods that move in weeks, not quarters

Across-functional pod (PE/QE/Test/SCM) ran EVT \rightarrow DVT \rightarrow PVT like a sprint cadence: short design loops, daily checklists, and a visible blocker board. Golden samples anchored decisions; first-article gates kept changes honest before the line scaled.

2) DFM/DFX/DFT that prevents downstream fire fighting

We front-loaded manufacturability, testability, and reliability: test-point access, stencil/land patterns, heat paths, connector clocking, and cabling bend-radius rules. Boundary-scan/JTAG covered dense nets; guard-banding normalized limits before volume.

3) Test early, test complementary (not just more)

We combined ICT (opens/shorts/values), <u>Functional Testing</u> (power-up, interfaces, sensors/actuators), and <u>EOL testing</u> (final feature + safety). Each stage caught a different failure mode, so speed didn't become rework.

4) Evidence by design (so audits don't slow you down)

Every unit was serialized; OBP bound firmware + checksum to MES; calibration/limit files were version-controlled; and no-pass/no-ship logic lived at the station. When the customer's SQA asked, the proof was already there.

Electronic Product Development Assembly Operations That Actually Move Faster

- Parallel line bring-up: cloneable fixtures and recipes let us stand a second lane while the first still learned.
- **BOM risk mapping**: alternates pre-approved on long-lead/at-risk parts; AVL expanded without changing function or safety.
- **Kitting discipline**: kit-integrity checks at inbound, at line-side, and at first-article—so changeover speed didn't spawn shortages.
- **Supplier choreography**: plastics/labels/pack synchronized; labels templated for EU/US compliance from day one.

What the buyer felt (real-world outcomes, not slogans)

- Launches held dates. Schedules stabilized because change control lived inside the pod, not across three vendors.
- Yields didn't wobble when mix changed. Clear defect taxonomy + complementary test kept FPY predictable in LVHM.
- Audits were faster. Serial-tied logs (OBP → test → pack) matched what quality teams needed—without a data hunt.
- Less firefighting = lower cost-to-serve. Fewer expedites, cleaner RMAs, calmer ops reviews.

A Single Model's Path (so you can picture it)

- 1. **Circuit Board build**: SMT/THT; ICT hits inaccessible nets; AOI + visual where meaningful.
- 2. **Identity**: OBP programs firmware, binds ID + checksum to MES; label template prepped for region.
- 3. **System proof**: FCT exercises I/O, sensors/relays; guard-band limits tuned off golden sample.
- 4. **Final gate**: EOL verifies features, safety, torque/label/seal; no-pass/no-ship blocks the next step.
- 5. **Pack & trace**: carton/pallet IDs bind to unit history for returns and scorecards.

What We Needed To Start Product Development (and what the customer got back)

- Customer Provided: BOM + AVL, Gerbers & stack-ups, firmware/comm requirements, regulator targets (EU/US), environmental constraints, ramp windows, and success criteria(yield/OTD).
- Customer Received: a DFX pack, coverage matrix (ICT vs FCT vs EOL), capacity ladder (how we add people/fixtures/stations), and a week-by-week NPI plan with gates and artifacts.

Product Development Program Snapshot

- **Scope**: 5 models from one platform family; awarded last year.
- Why us: internal test engineering, tight MES, and a pod that treats speed as a quality problem.
- **Status**: models launched on staggered cadence; FPY held steady across variant changeovers; audits cleared without delay.

Electronic Product Development Assembly Speed and Quality Results

Fast worked for the customer because it was built on proof. We were able to ship sooner without pain due to our front-loading of DFX/DFT, running complementary tests that close real failure modes, and wire traceability into the product—so speed wasn't a gamble, it's a system that our team has refined and continually improved over the years.

Learn more about Indic's Electronic Product Development:

<u>Testing & Quality</u>, <u>Design For Excellence (DFX)</u>, <u>Design For Manufacturing</u> (DFM), Design For Test (DFT), Functional Testing, EOL testing, NPI